特征融合python代码
时间: 2023-10-12 13:12:21 浏览: 84
特征融合可以采用简单的加权平均或堆叠等方法。以下是一个简单的加权平均的 Python 代码示例:
```python
import numpy as np
# 假设有两个特征矩阵 feature_matrix_1 和 feature_matrix_2
feature_matrix_1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
feature_matrix_2 = np.array([[2, 4, 6], [8, 10, 12], [14, 16, 18]])
# 定义权重
w1 = 0.5
w2 = 0.5
# 加权平均
fused_feature_matrix = w1 * feature_matrix_1 + w2 * feature_matrix_2
print(fused_feature_matrix)
```
堆叠的代码示例:
```python
from sklearn.model_selection import KFold
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
import numpy as np
# 假设有两个特征矩阵 feature_matrix_1 和 feature_matrix_2,以及目标变量 target
feature_matrix_1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
feature_matrix_2 = np.array([[2, 4, 6], [8, 10, 12], [14, 16, 18]])
target = np.array([4, 8, 12])
# 定义模型列表
models = [LinearRegression(), DecisionTreeRegressor()]
# 定义堆叠特征矩阵和目标变量
stacked_features = []
stacked_target = []
# 通过交叉验证生成堆叠特征矩阵和目标变量
kf = KFold(n_splits=5, shuffle=True)
for train_index, test_index in kf.split(feature_matrix_1):
fold_train_features_1, fold_test_features_1 = feature_matrix_1[train_index], feature_matrix_1[test_index]
fold_train_features_2, fold_test_features_2 = feature_matrix_2[train_index], feature_matrix_2[test_index]
fold_train_target, fold_test_target = target[train_index], target[test_index]
fold_train_stacked_features = []
fold_test_stacked_features = []
# 堆叠训练集特征
for model in models:
model.fit(fold_train_features_1, fold_train_target)
fold_train_stacked_features.append(model.predict(fold_train_features_2))
model.fit(fold_train_features_2, fold_train_target)
fold_train_stacked_features.append(model.predict(fold_train_features_1))
# 堆叠测试集特征
for model in models:
fold_test_stacked_features.append(model.predict(fold_test_features_1))
fold_test_stacked_features.append(model.predict(fold_test_features_2))
stacked_features.append(np.vstack((np.hstack(fold_train_stacked_features), np.hstack(fold_test_stacked_features))))
stacked_target.append(np.concatenate((fold_train_target, fold_test_target)))
# 将堆叠特征矩阵和目标变量组合成一个大的特征矩阵和目标变量
stacked_features = np.vstack(stacked_features)
stacked_target = np.concatenate(stacked_target)
# 在堆叠特征矩阵上训练最终模型
final_model = LinearRegression()
final_model.fit(stacked_features, stacked_target)
```
在上述代码示例中,我们使用了两个模型(线性回归和决策树回归),并在交叉验证的每个折叠中训练这两个模型。对于每个折叠,我们使用一个模型在一个特征矩阵上进行训练,并在另一个特征矩阵上进行预测,然后将预测结果作为堆叠特征。最后,我们将所有的堆叠特征和目标变量组合成一个大的特征矩阵和目标变量,然后在该特征矩阵上训练最终模型。