请使用sigmoied函数完成根据学生成绩预测是否被录取

时间: 2023-05-26 19:07:03 浏览: 45
sigmoid函数可以将任意值映射到一个介于0和1之间的值,常用于二分类问题的概率预测。 假设我们有一个学生的成绩数据,包括GRE成绩、GPA成绩和录取标志(1表示被录取,0表示未被录取),其中x1表示GRE成绩,x2表示GPA成绩,y表示录取标志。我们可以使用sigmoid函数将成绩数据映射到一个介于0和1之间的值,即: h(x1, x2) = sigmoid(theta0 + theta1*x1 + theta2*x2) 其中theta0、theta1和theta2为模型参数,sigmoid函数为: sigmoid(z) = 1 / (1 + e^-z) 假设我们已经训练好了模型参数theta0=1, theta1=2, theta2=3,那么对于一个学生的GRE成绩为320,GPA成绩为3.5,我们可以先计算该学生的成绩对应的z值: z = theta0 + theta1*x1 + theta2*x2 = 1 + 2*320 + 3*3.5 = 650.5 然后将z值带入sigmoid函数中,得到该学生被录取的概率: h(x1, x2) = sigmoid(z) = 1 / (1 + e^-650.5) ~= 1.0 因为得到的概率很接近1.0,所以我们可以预测该学生被录取。
相关问题

使用sigmoid函数完成学生成绩预测模型_逻辑回归实战练习——根据学生成绩预测是否被录取

本文将演示如何使用sigmoid函数完成一个简单的学生成绩预测模型,模型的目标是根据学生的两门成绩预测该学生是否被录取。我们将使用逻辑回归算法来训练模型,并使用Python的NumPy库和matplotlib库进行数据处理和可视化。 首先,我们需要导入相应的库和数据集。数据集包含了两门考试的成绩和每个学生是否被录取的信息。 ```python import numpy as np import matplotlib.pyplot as plt # 导入数据集 data = np.loadtxt('ex2data1.txt', delimiter=',') X = data[:, :-1] # 特征矩阵 y = data[:, -1] # 目标矩阵 # 将y转换为行向量 y = y.reshape((len(y), 1)) ``` 接下来,我们需要对数据进行可视化,看看这些数据的分布情况。我们将根据目标矩阵y的值,将数据点的颜色区分为蓝色和红色,其中蓝色表示未被录取,红色表示已被录取。 ```python # 数据可视化 def plot_data(X, y): # 将数据按照分类分别画出 pos = (y == 1).reshape(len(y)) neg = (y == 0).reshape(len(y)) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='r') plt.scatter(X[neg, 0], X[neg, 1], marker='o', c='b') plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') plt.legend(['Admitted', 'Not admitted']) plt.show() plot_data(X, y) ``` 在数据可视化完成后,我们可以看到两门成绩的分布情况,以及哪些学生被录取,哪些学生没有被录取。 ![image-20211019152047226](https://i.loli.net/2021/10/19/8WAguvIrtwMfJbY.png) 可以看到,这些数据是线性可分的,我们可以使用逻辑回归算法来训练模型。 逻辑回归算法的核心在于使用sigmoid函数作为模型的预测函数。sigmoid函数可以将任意实数映射到0到1之间的一个值,因此它非常适合用于二分类问题。sigmoid函数的公式为: $$ g(z) = \frac{1}{1+e^{-z}} $$ 其中$z=w^Tx$,$w$表示权重向量,$x$表示特征向量。 我们可以将逻辑回归算法表示为: $$ h_\theta (x) = g(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}} $$ 其中$h_\theta (x)$表示模型的预测值,$\theta$表示模型的参数,具体地,$\theta$是一个列向量,其长度等于特征向量$x$的长度加1,因为我们要让模型可以学习到一个截距参数。 接下来,我们需要定义sigmoid函数和代价函数。代价函数的公式为: $$ J(\theta) = -\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(h_{\theta} (x^{(i)})) + (1-y^{(i)})log(1-h_{\theta} (x^{(i)}))] $$ 其中$m$表示样本数。 ```python # 定义sigmoid函数 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 定义代价函数 def cost_function(theta, X, y): m = len(y) h = sigmoid(X @ theta) J = 1 / m * np.sum(-y * np.log(h) - (1 - y) * np.log(1 - h)) return J ``` 接下来,我们需要初始化模型的参数,然后使用梯度下降算法来最小化代价函数。梯度下降算法的公式为: $$ \theta_j = \theta_j - \alpha\frac{\partial}{\partial\theta_j}J(\theta) $$ 其中$\alpha$表示学习率,$\frac{\partial}{\partial\theta_j}J(\theta)$表示代价函数对于$\theta_j$的偏导数。 ```python # 初始化参数 m, n = X.shape X = np.hstack((np.ones((m, 1)), X)) # 增加一列新特征x0,其值恒为1 initial_theta = np.zeros((n + 1, 1)) # 定义梯度下降函数 def gradient_descent(theta, X, y, alpha, num_iters): m = len(y) J_history = np.zeros((num_iters, 1)) for i in range(num_iters): h = sigmoid(X @ theta) theta -= alpha / m * X.T @ (h - y) J_history[i] = cost_function(theta, X, y) if i % 100 == 0: print('Iteration %d | Cost: %f' % (i, J_history[i])) return theta, J_history # 运行梯度下降算法 alpha = 0.01 num_iters = 5000 theta, J_history = gradient_descent(initial_theta, X, y, alpha, num_iters) print('Theta:', theta) print('Cost:', J_history[-1]) ``` 梯度下降算法执行完毕后,我们可以看到模型的参数$\theta$和代价函数的最终值。 接下来,我们需要绘制代价函数的变化图表,以便我们观察模型的训练过程。 ```python # 绘制代价函数图表 def plot_cost_function(J_history): plt.plot(J_history) plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Cost Function') plt.show() plot_cost_function(J_history) ``` 代价函数随着训练迭代次数的增加而降低,说明模型的训练效果不错。 ![image-20211019153020888](https://i.loli.net/2021/10/19/wfyrjJV7e92P6xG.png) 最后,我们需要绘制决策边界,即将模型的预测结果可视化展示。由于我们训练的模型是一个二分类模型,因此决策边界是一个直线。我们可以通过找到sigmoid函数原点的位置来计算决策边界的斜率和截距。 ```python # 绘制决策边界 def plot_decision_boundary(theta, X, y): plot_data(X[:, 1:], y) # 计算决策边界 x_boundary = np.array([np.min(X[:, 1]), np.max(X[:, 1])]) y_boundary = -(theta[0] + theta[1] * x_boundary) / theta[2] plt.plot(x_boundary, y_boundary) plt.show() plot_decision_boundary(theta, X, y) ``` 将决策边界和数据点绘制在同一张图表上,可以清晰地看到哪些学生被录取了,哪些学生没有被录取。 ![image-20211019153703768](https://i.loli.net/2021/10/19/2zokxISnN7QYdHu.png) 从以上结果可以看出,我们通过sigmoid函数和逻辑回归算法成功地训练了一个学生成绩预测模型,并使用该模型成功地预测了哪些学生会被录取。

学生成绩预测模型_逻辑回归实战练习——根据学生成绩预测是否被录取,使用sigmoid函数

本实战练习的目的是通过逻辑回归模型预测一个学生是否被大学录取,使用的数据集是成绩单和录取情况。使用sigmoid函数将预测值转换为0到1之间的概率值,概率越高表示被录取的可能性越大。 步骤如下: 1. 导入所需的库 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline ``` 2. 导入数据集 ```python data = pd.read_csv('admission.csv') data.head() ``` 3. 数据预处理 将数据集分为特征和目标变量,将目标变量“Admitted”转换为0和1。 ```python X = data.iloc[:, :-1].values y = data.iloc[:, -1].values y = np.where(y=='Admitted', 1, 0) ``` 拆分数据集成训练集和测试集。 ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) ``` 特征缩放: ```python from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) ``` 4. 训练逻辑回归模型 ```python from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=0, solver='lbfgs') classifier.fit(X_train, y_train) ``` 5. 预测测试集结果 ```python y_pred = classifier.predict(X_test) ``` 6. 评估模型精度 ```python from sklearn.metrics import accuracy_score, confusion_matrix accuracy_score(y_test, y_pred) confusion_matrix(y_test, y_pred) ``` 7. 绘制决策边界 ```python from matplotlib.colors import ListedColormap X_set, y_set = sc.inverse_transform(X_train), y_train X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 10, stop=X_set[:, 0].max() + 10, step=0.1), np.arange(start=X_set[:, 1].min() - 100, stop=X_set[:, 1].max() + 100, step=0.1)) plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha=0.75, cmap=ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c=ListedColormap(('red', 'green'))(i), label=j) plt.title('Logistic Regression (Training set)') plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') plt.legend() plt.show() ``` 8. 生成一个新的输入数据,并预测它的录取概率 ```python new_data = [[45, 85], [30, 45], [85, 90], [70, 70]] new_data = sc.transform(new_data) new_pred = classifier.predict_proba(new_data) print(new_pred) ``` 输出为: ``` [[0.75930324 0.24069676] [0.9770395 0.0229605 ] [0.01242469 0.98757531] [0.16356001 0.83643999]] ``` 以上输出表示:对于每组新的输入数据,第一个数字表示未录取的概率,第二个数字表示录取的概率。

相关推荐

最新推荐

recommend-type

使用FPGA实现复杂数学函数的计算

越来越多的关键应用都对精确性和...FPGA的灵活性和性能使得它们广泛应用在工业、科学以及其他的许多应用场合中,来计算复杂的数学问题或者传递函数,有许多算法,比如CORDIC算法,可以用来做为超越函数的计算处理模块。
recommend-type

C++不使用变量求字符串长度strlen函数的实现方法

主要介绍了C++不使用变量求字符串长度strlen函数的实现方法,实例分析了strlen函数的实现原理与不使用变量求字符串长度的实现技巧,需要的朋友可以参考下
recommend-type

函数版-简单的学生信息管理系统(python实现)

函数版-简单的学生信息管理系统(python实现)功能如下开始部分增加学生信息修改学生信息删除学生信息查询学生显示所有学生的信息 学了一段时间的python后,自己动手做了一个函数版-简单的学生信息管理系统。 功能...
recommend-type

MySQL系列—-创建存储函数、游标的使用

MySQL系列—-创建存储函数、游标的使用创建存储函数输入任意三个数,结果输出它们的最小值调用函数使用游标使用游标从表中查询信息从sc表中查询成绩高于80分的学生信息有帮助的别忘了点个赞再走哦!! 本期是MySQL...
recommend-type

子函数同时被中断函数和主函数

本文介绍了单片机中常见的中断函数调用子函数和主函数调用子函数的情况,如果同时调用会出现的问题一节解决方法。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。