matlab用增广矩阵法求系统的输出相应
时间: 2023-05-30 12:05:04 浏览: 210
假设有一个线性时不变系统,其输入为 $u(t)$,输出为 $y(t)$,系统的传递函数为 $G(s)$。则系统的输出响应 $y(t)$ 可以通过增广矩阵法求解。
假设系统的初值为 $y(0)=y_0$,$u(t)=0(t<0)$。则系统的输出响应为:
$$y(t)=y_0h(t)+\int_0^t u(\tau)h(t-\tau)d\tau$$
其中 $h(t)$ 为系统的单位脉冲响应。将 $u(t)$ 表示为单位脉冲序列的线性组合,即 $u(t)=\sum_{k=0}^\infty u_k\delta(t-kT)$,代入上式得:
$$y(t)=y_0h(t)+\sum_{k=0}^\infty u_k\int_0^t h(t-\tau)\delta(\tau-kT)d\tau$$
令 $t=nT$,则有:
$$y(nT)=y_0h(nT)+\sum_{k=0}^\infty u_kh(nT-kT)$$
将 $y(nT)$、$u_k$ 和 $h(nT-kT)$ 组成增广矩阵,将其进行高斯-约旦消元即可求得 $y(nT)$。具体来说,可以先将增广矩阵的第一列除以对角线元素,然后将第一列以下的元素消成零,得到一个新的增广矩阵。然后将新的增广矩阵的第二列除以对角线元素,再将第二列以下的元素消成零,得到一个更小的增广矩阵。重复这个过程,直到增广矩阵变为一个上三角矩阵。最后可以通过回代求解得到 $y(nT)$ 的值。
相关问题
matlab增广矩阵法求系统输出响应
1. 首先,将系统转化为矩阵形式,即将系统方程中的各项系数和常数分别放入一个矩阵中,形成增广矩阵。
2. 接着,利用matlab中的矩阵运算函数求出增广矩阵的行最简形式,即将增广矩阵化为行阶梯形矩阵。
3. 根据行阶梯形矩阵求解出系统的解析解。
4. 对于离散系统,可以利用matlab中的差分方程求解函数求解系统的输出响应。
计算机仿真技术增广矩阵法,计算机仿真技术复习指导
增广矩阵法是一种常见的线性代数求解方法,可以用于求解线性方程组、矩阵的逆、特征值等问题。计算机仿真技术可以借助计算机进行模拟和计算,实现对各种物理现象和工程问题的分析和预测。
下面给出增广矩阵法的步骤:
1. 将方程组的系数矩阵和常数向量合并成一个增广矩阵。
2. 对增广矩阵进行初等行变换,使得增广矩阵的左下角部分为0。
3. 反复进行第2步,直到增广矩阵化为阶梯形矩阵。
4. 从最后一行开始倒序回带,求出方程组的解。
计算机仿真技术的复习指导可以包括以下内容:
1. 数值计算方法:包括线性方程组求解、非线性方程求解、插值、积分、微分等基本数值计算方法。
2. 数值计算软件:介绍MATLAB、Python等数值计算工具的使用方法。
3. 仿真建模:介绍如何通过建立数学模型对各种物理现象进行仿真分析。
4. 仿真实验:通过实际案例,介绍如何进行仿真实验、如何分析仿真结果。
5. 仿真优化:介绍如何通过仿真优化方法对工程问题进行优化设计。
希望以上内容对你有所帮助。
阅读全文