def image_processing(img,device): # normalize img = img.astype(np.float32) img = (img / 255. - mean_value) / std_value img = img.transpose([2, 0, 1]) img = torch.from_numpy(img) img = img.to(device) img = img.view(1, *img.size()) return img
时间: 2023-06-27 18:03:30 浏览: 231
处理图片
这段代码是一个图像处理函数,它将输入的图像数据进行归一化和转换操作,并将其转换成 PyTorch 中的 Tensor 格式。具体来说,该函数首先将图像数据类型转换为 np.float32 类型,然后进行归一化操作。归一化操作使用了该函数所在作用域外定义的 mean_value 和 std_value 变量,它们分别表示图像数据在每个通道上的均值和标准差。接着,该函数对图像数据进行了维度转换,将通道维度放到了最前面,并将其转换成 PyTorch 中的 Tensor 格式。最后,该函数将 Tensor 数据的形状改为 (1, C, H, W) 的形式,其中 C、H 和 W 分别表示通道数、高度和宽度。该函数的输入参数中,img 表示输入的图像数据,device 表示计算设备。该函数返回处理后的 Tensor 数据。
阅读全文