求完整yolov7-tiny减少检测头的代码,且在pytorch环境下
时间: 2024-02-21 09:57:32 浏览: 140
基于python的YoloV4-pytorch目标检测模型实现代码
以下是在PyTorch环境下实现YOLOv7-tiny减少检测头的完整代码示例:
```python
import torch
import torch.nn as nn
# 定义YOLOv7-tiny的主干网络
class TinyBody(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.LeakyReLU(0.1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.LeakyReLU(0.1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.LeakyReLU(0.1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.relu4 = nn.LeakyReLU(0.1)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(512)
self.relu5 = nn.LeakyReLU(0.1)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn6 = nn.BatchNorm2d(1024)
self.relu6 = nn.LeakyReLU(0.1)
self.conv7 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1)
self.bn7 = nn.BatchNorm2d(1024)
self.relu7 = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.pool1(self.relu1(self.bn1(self.conv1(x))))
x = self.pool2(self.relu2(self.bn2(self.conv2(x))))
x = self.pool3(self.relu3(self.bn3(self.conv3(x))))
x = self.pool4(self.relu4(self.bn4(self.conv4(x))))
x = self.pool5(self.relu5(self.bn5(self.conv5(x))))
x = self.relu6(self.bn6(self.conv6(x)))
x = self.relu7(self.bn7(self.conv7(x)))
return x
# 定义YOLOv7-tiny的检测头
class TinyHead(nn.Module):
def __init__(self, in_channels, num_anchors, num_classes):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, 256, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(256)
self.relu1 = nn.LeakyReLU(0.1)
self.conv2 = nn.Conv2d(256, num_anchors * (num_classes + 5), kernel_size=1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
return x
# 将YOLOv7-tiny的检测头从3个缩小到2个
class YOLOv7Tiny(nn.Module):
def __init__(self, num_classes, num_anchors):
super().__init__()
self.body = TinyBody()
self.head1 = TinyHead(1024, num_anchors, num_classes)
self.conv1 = nn.Conv2d(512, 256, kernel_size=1)
self.upsample1 = nn.Upsample(scale_factor=2, mode='nearest')
self.concat1 = nn.Concat(dim=1)
self.head2 = TinyHead(384, num_anchors, num_classes)
def forward(self, x):
x_body = self.body(x)
x1 = self.head1(x_body)
x = self.conv1(x_body)
x = self.upsample1(x)
x = self.concat1([x, self.body.conv5])
x2 = self.head2(x)
return [x1, x2]
```
在上面的代码中,我们首先定义了YOLOv7-tiny的主干网络TinyBody,并定义了YOLOv7-tiny的检测头TinyHead。然后,我们定义了YOLOv7-tiny的整个网络结构YOLOv7Tiny,其中将YOLOv7-tiny的检测头从3个缩小到2个。最后,我们可以使用YOLOv7Tiny来进行目标检测任务。
阅读全文