pyspark实现本地简单Kmeans代码及数据集
时间: 2023-11-23 21:07:15 浏览: 75
以下是一个简单的本地KMeans实现的示例代码:
```python
from pyspark import SparkConf, SparkContext
from numpy import array
from math import sqrt
# 定义计算欧几里得距离的函数
def euclidean_distance(point1, point2):
return sqrt(sum([(a - b) ** 2 for a, b in zip(point1, point2)]))
# 定义KMeans函数
def kmeans(data, k, converge_dist):
k_points = data.takeSample(False, k, 1)
temp_dist = 1.0
while temp_dist > converge_dist:
closest = data.map(
lambda point: (min([(i, euclidean_distance(point, k_points[i])) for i in range(k)], key=lambda x: x[1])[0], (point, 1))
)
point_stats = closest.reduceByKey(
lambda point1, point2: (array(point1[0]) + array(point2[0]), point1[1] + point2[1])
)
new_points = point_stats.map(
lambda st: (st[0], st[1][0] / st[1][1])
).collect()
temp_dist = sum(
[euclidean_distance(k_points[ik], p) for ik, p in new_points]
)
for ik, p in new_points:
k_points[ik] = p
return k_points
# 创建Spark环境
conf = SparkConf().setAppName("KMeans").setMaster("local")
sc = SparkContext(conf=conf)
# 加载数据集
data = sc.textFile("data.txt").map(lambda line: array([float(x) for x in line.split(' ')]))
# 调用KMeans函数
centroids = kmeans(data, 3, 0.1)
# 输出聚类中心
for c in centroids:
print(c)
```
数据集示例(data.txt):
```
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0
10.0 11.0 12.0
13.0 14.0 15.0
16.0 17.0 18.0
```
运行后会输出3个聚类中心的坐标值。注意,这个实现是在本地运行的,而不是分布式的,因此适用于小规模数据集。
阅读全文