已经获取2个RNA的特征矩阵 ,每个矩阵维度是1307×48,一个矩阵是正样本数据标签为1 ,另一个矩阵是负样本数据标签为0 构建一个包含3层全连接层的深度神经网络,用该神经网络预测该数据是正样本还是负样本(用pytorch实现) 其中,70%为训练集,10%为验证集,20%的数据为测试集
时间: 2024-03-06 15:51:50 浏览: 137
以下是使用PyTorch实现的代码,包括数据预处理、构建神经网络模型、训练模型、评估模型等步骤:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
# 加载数据
data1 = torch.load('data1.pt')
data2 = torch.load('data2.pt')
label1 = torch.ones(data1.shape[0], 1) # 正样本标签为1
label2 = torch.zeros(data2.shape[0], 1) # 负样本标签为0
data = torch.cat((data1, data2), dim=0) # 拼接数据
label = torch.cat((label1, label2), dim=0) # 拼接标签
# 划分训练集、验证集、测试集
X_train, X_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.125, random_state=42)
# 转换为TensorDataset
train_data = TensorDataset(X_train, y_train)
val_data = TensorDataset(X_val, y_val)
test_data = TensorDataset(X_test, y_test)
# 构建DataLoader
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
val_loader = DataLoader(val_data, batch_size=32, shuffle=True)
test_loader = DataLoader(test_data, batch_size=32, shuffle=True)
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(1307*48, 256) # 输入层
self.fc2 = nn.Linear(256, 64) # 隐藏层
self.fc3 = nn.Linear(64, 1) # 输出层
self.relu = nn.ReLU() # 激活函数
def forward(self, x):
x = x.view(-1, 1307*48) # 展开数据
x = self.relu(self.fc1(x)) # 输入层
x = self.relu(self.fc2(x)) # 隐藏层
x = self.fc3(x) # 输出层
return x
# 实例化模型、损失函数、优化器
model = Net()
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(50):
train_loss = 0.0
val_loss = 0.0
# 训练模式
model.train()
for data, label in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
train_loss += loss.item()*data.size(0)
train_loss /= len(train_loader.dataset)
# 验证模式
model.eval()
for data, label in val_loader:
with torch.no_grad():
output = model(data)
loss = criterion(output, label)
val_loss += loss.item()*data.size(0)
val_loss /= len(val_loader.dataset)
print('Epoch: {}, Training Loss: {:.4f}, Validation Loss: {:.4f}'.format(epoch+1, train_loss, val_loss))
# 测试模型
model.eval()
with torch.no_grad():
test_loss = 0.0
correct = 0
total = 0
for data, label in test_loader:
output = model(data)
loss = criterion(output, label)
test_loss += loss.item()*data.size(0)
pred = torch.round(torch.sigmoid(output))
correct += (pred == label).sum().item()
total += label.size(0)
test_loss /= len(test_loader.dataset)
accuracy = correct/total
print('Test Loss: {:.4f}, Accuracy: {:.4f}'.format(test_loss, accuracy))
```
注:本代码仅供参考,具体实现方式可能因数据集和任务需求而异。
阅读全文
相关推荐
![ipynb](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)