OpenCvSharp4.6 编写的 C# 代码版本 // 求取极值点 void Caliper::FindExtremePoint() { // 1. 检查搜索路径像素数据是否为空 if(pathPixelValueAfterFilter.empty()) return; // 2. 遍历滤波后的数据,查找极值点 extremePoints.clear(); switch (polarity) { // 不考虑极性 case 0 : for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; // 黑到白 case 1 : for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (pathPixelValueAfterFilter.at(i) > 0 && size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; // 白到黑 case -1: for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (pathPixelValueAfterFilter.at(i) < 0 && size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; default: assert(false); break; }

时间: 2024-04-26 13:22:55 浏览: 11
这段代码是用于在图像中搜索极值点的,主要包括以下步骤: 1. 检查搜索路径像素数据是否为空; 2. 遍历滤波后的数据,查找极值点; 3. 根据极性类型分别处理不同的情况,包括不考虑极性、黑到白和白到黑; 4. 找到极值点后将其信息保存到 `extremePoints` 中。 其中,`pathPixelValueAfterFilter` 是经过滤波后的搜索路径像素数据,`contrastThreshold` 是对比度的阈值,`path` 是搜索路径的像素坐标,`polarity` 是极性类型。
相关问题

OpenCvSharp4.6 编写的 C# 代码版本 // 求取极值点 void Caliper::FindExtremePoint() { // 1. 检查搜索路径像素数据是否为空 if(pathPixelValueAfterFilter.empty()) return; // 2. 遍历滤波后的数据,查找极值点 extremePoints.clear(); switch (polarity) { // 不考虑极性 case 0 : for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; // 黑到白 case 1 : for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (pathPixelValueAfterFilter.at(i) > 0 && size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; // 白到黑 case -1: for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (pathPixelValueAfterFilter.at(i) < 0 && size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; default: assert(false); break; }OpenCvSharp4.6 编写的 C# 代码版本函数

这段代码是用于在图像中搜索极值点的,主要包括以下步骤: 1. 检查搜索路径像素数据是否为空; 2. 遍历滤波后的数据,查找极值点; 3. 根据极性类型分别处理不同的情况,包括不考虑极性、黑到白和白到黑; 4. 找到极值点后将其信息保存到 `extremePoints` 中。 其中,`pathPixelValueAfterFilter` 是经过滤波后的搜索路径像素数据,`contrastThreshold` 是对比度的阈值,`path` 是搜索路径的像素坐标,`polarity` 是极性类型。

// 极值点评分 void Caliper::ExtremePointRating() { if(extremePoints.empty()) return; // 评分: value * (1 - |i - 0.5 * le| / 0.5 * len) int halfLen = static_cast<int>(path.size() / 2); for(auto& e: extremePoints) { e.score = e.value * (1 - static_cast<double>(std::abs(e.ps - halfLen)) / halfLen); } //按评分排序:降序 sort(extremePoints.begin(), extremePoints.end(), CompareExtremPointInfoBysocre); result.peak = extremePoints.at(0).pt; if(extremePoints.size() == 1) { result.center = result.front = result.back = extremePoints.at(0).pt; return; } if(extremePoints.size() == 2) { int a = std::abs(extremePoints.at(0).ps - halfLen); int b = std::abs(extremePoints.at(1).ps - halfLen); if(a > b) { result.front = result.back = extremePoints.at(0).pt; result.center = extremePoints.at(1).pt; }else { } }else { std::vector<ExtremPointInfo> epf(extremePoints.begin(), extremePoints.begin() + 3); sort(epf.begin(), epf.end(), CompareExtremPointInfoByPs);//降序 result.back = epf.at(0).pt; result.center = epf.at(1).pt; result.front = epf.at(2).pt; } }//ExtremePointRating 基于opencvsharp4.6 请优化代码,生成新的函数

为了优化代码,可以考虑以下几个方面: 1. 减少不必要的类型转换 在原有代码中,存在如下的类型转换: ``` int halfLen = static_cast<int>(path.size() / 2); ``` 可以改为使用整数除法运算符 `/`,避免类型转换的开销: ``` int halfLen = path.size() / 2; ``` 2. 避免不必要的容器复制 在原有代码中,存在如下的容器复制操作: ``` std::vector<ExtremPointInfo> epf(extremePoints.begin(), extremePoints.begin() + 3); ``` 可以改为直接使用 `std::array`,避免不必要的容器复制: ``` std::array<ExtremPointInfo, 3> epf = {extremePoints[0], extremePoints[1], extremePoints[2]}; ``` 3. 使用 lambda 表达式简化代码 在原有代码中,使用了函数指针作为 `sort` 函数的比较函数: ``` sort(extremePoints.begin(), extremePoints.end(), CompareExtremPointInfoBysocre); sort(epf.begin(), epf.end(), CompareExtremPointInfoByPs); ``` 可以改为使用 lambda 表达式,使代码更加简洁: ``` sort(extremePoints.begin(), extremePoints.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.score > b.score; }); sort(epf.begin(), epf.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.ps > b.ps; }); ``` 基于以上优化,可以得到如下的新函数: ``` void Caliper::ExtremePointRatingOptimized() { if (extremePoints.empty()) return; // 评分: value * (1 - |i - 0.5 * le| / 0.5 * len) int halfLen = path.size() / 2; for (auto& e : extremePoints) { e.score = e.value * (1 - static_cast<double>(std::abs(e.ps - halfLen)) / halfLen); } // 按评分排序:降序 sort(extremePoints.begin(), extremePoints.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.score > b.score; }); result.peak = extremePoints[0].pt; if (extremePoints.size() == 1) { result.center = result.front = result.back = extremePoints[0].pt; return; } if (extremePoints.size() == 2) { int a = std::abs(extremePoints[0].ps - halfLen); int b = std::abs(extremePoints[1].ps - halfLen); if (a > b) { result.front = result.back = extremePoints[0].pt; result.center = extremePoints[1].pt; } else { result.front = result.back = extremePoints[1].pt; result.center = extremePoints[0].pt; } } else { std::array<ExtremPointInfo, 3> epf = {extremePoints[0], extremePoints[1], extremePoints[2]}; // 降序 sort(epf.begin(), epf.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.ps > b.ps; }); result.back = epf[0].pt; result.center = epf[1].pt; result.front = epf[2].pt; } } ```

相关推荐

最新推荐

recommend-type

python计算波峰波谷值的方法(极值点)

主要介绍了python求极值点(波峰波谷)求极值点主要用到了scipy库,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

python 遗传算法求函数极值的实现代码

今天小编就为大家分享一篇python 遗传算法求函数极值的实现代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python 练习题:学生成绩求极值

程序一: 接收用户输入的名字和成绩,成绩是1-100 间、最多两位小数。 按Q结束输入,并将合法输入的数据写入到一个文件。 程序二:读取程序一输出的文件,然后对成绩计算平均值,并输出最高分和最低分值及姓名。 ...
recommend-type

使用Python实现牛顿法求极值

今天小编就为大家分享一篇使用Python实现牛顿法求极值,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

基于Selenium的Java爬虫实战(内含谷歌浏览器Chrom和Chromedriver版本116.0.5808.0)

资源包括: 1.Java爬虫实战代码 2.selenium学习笔记 3.代码演示视频 4.谷歌浏览器chrom116.0.5808.0 chrome-linux64.zip chrome-mac-arm64.zip chrome-mac-x64.zip chrome-win32.zip chrome-win64.zip 5.谷歌浏览器驱动器Chromedriver116.0.5808.0 chromedriver-linux64.zip chromedriver-mac-arm64.zip chromedriver-mac-x64.zip chromedriver-win32.zip chromedriver-win64.zip 特别说明:Chrome 为测试版(不会自动更新) 仅适用于自动测试。若要进行常规浏览,请使用可自动更新的标准版 Chrome。)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。