编写算法函数void reverse(sequence_list *L),实现顺序表的就地倒置

时间: 2023-05-22 20:03:38 浏览: 83
您好,这里是C知道。以下是函数void reverse(sequence_list *L)的实现代码: ``` void reverse(sequence_list *L) { int len = L->length; int i, temp; for (i = 0; i < len / 2; i++) { temp = L->data[i]; L->data[i] = L->data[len - i - 1]; L->data[len - i - 1] = temp; } } ``` 感谢您的提问。
相关问题

编写算法函数void reverse(sequence)

void reverse(sequence){ int length = sequence.length(); for(int i=0; i<length/2; i++){ int temp = sequence[i]; sequence[i] = sequence[length-i-1]; sequence[length-i-1] = temp; } } 这是一个简单的反转序列的函数,函数的输入是一个序列(可以是字符串或数组等),函数会将序列中的元素从头到尾翻转,通过交换前半部分和后半部分的元素实现。

要求实现以下结构体或者函数(每个函数功能请严格按照要 求完成,不要修改,检查时会用统一main函数调用执行): struct Node; int list_tail_insert(Node *list_head, int var) // 单个数据插入,尾插法 Node *list_head_insert(Node *list_head, int var) //单个数据插入,头插法 Node *list_specific_insert(Node *list_head, int location, int var) //指定位置插入,可以插入头,尾, 或者头尾之间任意位置 void print_list(Node *list_head) //输出链表,循环 方式,空格隔开 void reverse_print_list(Node *list_head) //逆序输 出,递归方式,空格隔开 void change_specific_var(Node *list_head, int old_var, int new_var) //修改链表中的指定元素值 Node *del_specific_var(Node *list_head, int del_var) //删除链表中的指定元素值 Node *sort(Node *list_head) //从小到大排序 示例main函数中调用顺序 Node *list_head_insert Node *list_head_insert Node *list_head_insert int list_tail_insert int list_tail_insert Node *list_specific_insert void print_list Node *sort void print_listnvoid reverse_print_list void change_specific_var 2 3 void print_list Node *del_specific_var 3 void print_list

以下是实现要求的结构体和函数: struct Node { int val; Node *next; }; int list_tail_insert(Node *list_head, int var) { Node *new_node = new Node; new_node->val = var; new_node->next = NULL; if (list_head == NULL) { list_head = new_node; } else { Node *cur = list_head; while (cur->next != NULL) { cur = cur->next; } cur->next = new_node; } return 0; } Node *list_head_insert(Node *list_head, int var) { Node *new_node = new Node; new_node->val = var; new_node->next = list_head; return new_node; } Node *list_specific_insert(Node *list_head, int location, int var) { Node *new_node = new Node; new_node->val = var; if (location == 0) { new_node->next = list_head; return new_node; } Node *cur = list_head; for (int i = 0; i < location - 1; i++) { cur = cur->next; } new_node->next = cur->next; cur->next = new_node; return list_head; } void print_list(Node *list_head) { Node *cur = list_head; while (cur != NULL) { cout << cur->val << " "; cur = cur->next; } cout << endl; } void reverse_print_list(Node *list_head) { if (list_head == NULL) { return; } reverse_print_list(list_head->next); cout << list_head->val << " "; } void change_specific_var(Node *list_head, int old_var, int new_var) { Node *cur = list_head; while (cur != NULL) { if (cur->val == old_var) { cur->val = new_var; } cur = cur->next; } } Node *del_specific_var(Node *list_head, int del_var) { Node *dummy = new Node; dummy->next = list_head; Node *cur = dummy; while (cur->next != NULL) { if (cur->next->val == del_var) { Node *temp = cur->next; cur->next = cur->next->next; delete temp; } else { cur = cur->next; } } return dummy->next; } Node *sort(Node *list_head) { if (list_head == NULL || list_head->next == NULL) { return list_head; } Node *slow = list_head; Node *fast = list_head->next; while (fast != NULL && fast->next != NULL) { slow = slow->next; fast = fast->next->next; } Node *mid = slow->next; slow->next = NULL; Node *left = sort(list_head); Node *right = sort(mid); Node *dummy = new Node; Node *cur = dummy; while (left != NULL && right != NULL) { if (left->val < right->val) { cur->next = left; left = left->next; } else { cur->next = right; right = right->next; } cur = cur->next; } cur->next = (left == NULL) ? right : left; return dummy->next; } 示例main函数中调用顺序: Node *list = NULL; list = list_head_insert(list, 1); list = list_head_insert(list, 2); list = list_head_insert(list, 3); list_tail_insert(list, 4); list_tail_insert(list, 5); list = list_specific_insert(list, 2, 6); print_list(list); list = sort(list); print_list(list); reverse_print_list(list); change_specific_var(list, 2, 3); print_list(list); list = del_specific_var(list, 3); print_list(list);

相关推荐

最新推荐

recommend-type

机器学习实战 - KNN(K近邻)算法PDF知识点详解 + 代码实现

邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据...
recommend-type

chromedriver-win64_121.0.6123.0.zip

chromedriver-win64_121.0.6123.0.zip
recommend-type

Chekiang Shu Ke Sung-mianfeiziti字體下載

Chekiang Shu Ke Sung-mianfeiziti字體下載
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA