有向加权图(权值存在负数)求最短路径的边介数python实现
时间: 2024-02-05 22:04:29 浏览: 71
求带权图最短路径的代码
5星 · 资源好评率100%
以下是Python实现有向加权图最短路径的边介数的示例代码:
```python
import heapq
def shortest_path_edge_betweenness(G, s, t):
# 初始化边介数和距离
betweenness = {(u, v): 0.0 for u in G for v in G[u]}
distance = {u: float('inf') for u in G}
distance[s] = 0.0
paths = {u: [] for u in G}
paths[s] = [[s]]
# 计算最短路径和路径数量
queue = [(0.0, s, None)]
while queue:
(dist, u, p) = heapq.heappop(queue)
for v, e in G[u].items():
w = e['weight']
if distance[v] > dist + w:
distance[v] = dist + w
paths[v] = [path + [v] for path in paths[u]]
heapq.heappush(queue, (distance[v], v, u))
elif distance[v] == dist + w:
paths[v].extend([path + [v] for path in paths[u]])
# 计算边介数
credit = {u: 1.0 for u in G}
while paths[t]:
path = paths[t].pop()
for i in range(len(path) - 1):
u, v = path[i], path[i + 1]
credit[v] += credit[u] * betweenness[(u, v)]
betweenness[(u, v)] += credit[u] / credit[v]
return betweenness
```
该算法使用Dijkstra算法计算最短路径和路径数量,并通过迭代计算边介数。该算法的时间复杂度为$O(mn\log n)$,其中$m$是边数,$n$是节点数。
阅读全文