python手动实现DBSCAN
时间: 2023-09-21 20:03:37 浏览: 84
DBSCAN是一种基于密度的聚类算法。下面是手动实现DBSCAN的Python代码示例:
```
import numpy as np
def dbscan(data, eps, min_samples):
n_samples, n_features = data.shape
visited = np.zeros(n_samples, dtype=bool)
labels = np.zeros(n_samples, dtype=int)
label = 0
for i in range(n_samples):
if visited[i]:
continue
visited[i] = True
neighb = get_neighbors(data, i, eps)
if len(neighb) < min_samples:
labels[i] = -1
else:
label += 1
labels[i] = label
expand_cluster(data, visited, labels, i, neighb, label, eps, min_samples)
return labels
def expand_cluster(data, visited, labels, i, neighb, label, eps, min_samples):
for j in neighb:
if not visited[j]:
visited[j] = True
new_neighb = get_neighbors(data, j, eps)
if len(new_neighb) >= min_samples:
neighb = neighb + new_neighb
if labels[j] == 0:
labels[j] = label
def get_neighbors(data, i, eps):
neighb = []
for j in range(len(data)):
if np.linalg.norm(data[i]-data[j]) < eps:
neighb.append(j)
return neighb
```
其中,data是待聚类的数据,eps为邻域半径,min_samples为最小样本数。函数dbscan返回聚类结果,labels是每个样本的类别标记,-1表示噪声点。
需要注意的是,这个手动实现的DBSCAN算法可能会比较慢,当数据量较大时,可以考虑使用sklearn库中的DBSCAN算法。
阅读全文