写出用tensorflow基于树莓派摄像头米桶储量计量的代码
时间: 2023-08-31 17:33:22 浏览: 102
### 回答1:
以下是一个基于TensorFlow的树莓派摄像头米桶储量计量的示例代码:
```python
import tensorflow as tf
import numpy as np
import cv2
# 加载模型
model = tf.keras.models.load_model('model.h5')
# 定义类别标签
classes = ['空桶', '半桶', '满桶']
# 初始化摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取一帧图像
ret, frame = cap.read()
# 裁剪出米桶区域,并进行预处理
bucket_roi = frame[100:300, 100:300]
bucket_roi = cv2.resize(bucket_roi, (224, 224))
bucket_roi = cv2.cvtColor(bucket_roi, cv2.COLOR_BGR2RGB)
bucket_roi = bucket_roi / 255.0
bucket_roi = np.expand_dims(bucket_roi, axis=0)
# 使用模型进行预测
prediction = model.predict(bucket_roi)[0]
class_index = np.argmax(prediction)
class_label = classes[class_index]
# 在图像上绘制预测结果
cv2.putText(frame, class_label, (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.rectangle(frame, (100, 100), (300, 300), (0, 255, 0), 2)
# 显示图像
cv2.imshow('Bucket', frame)
# 按下q键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
```
这个代码使用了一个预训练好的卷积神经网络模型来对米桶区域进行分类,可以将其分为“空桶”、“半桶”和“满桶”三类。代码首先加载了模型和类别标签,然后初始化摄像头并开始循环读取图像。每次循环中,代码会裁剪出米桶区域并进行预处理,然后使用模型进行预测,得到一个概率分布。最后,代码会找到概率最大的类别,将其作为预测结果,并在图像上进行绘制。循环会一直执行直到用户按下q键退出。
### 回答2:
下面是使用TensorFlow基于树莓派摄像头来计量米桶储量的代码:
```python
import tensorflow as tf
import cv2
import numpy as np
# 加载预训练模型
model_path = 'path_to_your_model/model.pb'
with tf.gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# 读取摄像头
cap = cv2.VideoCapture(0)
# 创建图
with tf.Session() as sess:
# 加载图
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
# 获取输入和输出张量
inputs = sess.graph.get_tensor_by_name('input:0')
outputs = sess.graph.get_tensor_by_name('output:0')
while True:
# 读取图像帧
ret, frame = cap.read()
if not ret:
break
# 对图像进行预处理(根据模型的输入要求)
preprocessed_frame = cv2.resize(frame, (224, 224))
preprocessed_frame = np.expand_dims(preprocessed_frame, axis=0)
# 进行预测
predictions = sess.run(outputs, feed_dict={inputs: preprocessed_frame})
# 在图像上显示预测结果
cv2.putText(frame, f'Mi bucket volume: {predictions[0]}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Mi bucket volume measurement', frame)
# 按下 q 键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
```
在上面的代码中,需要替换`model_path`为你训练好的模型的路径。该代码将实时从摄像头中获取图像帧,并使用预训练的模型进行预测,然后将预测结果显示在图像上。
### 回答3:
下面是基于TensorFlow和树莓派摄像头的米桶储量计量代码:
1. 导入所需的库
```python
import RPi.GPIO as GPIO
import time
import picamera
import tensorflow as tf
import numpy as np
```
2. 设置GPIO引脚和相关参数
```python
GPIO.setmode(GPIO.BOARD)
GPIO_TRIGGER = 11
GPIO_ECHO = 13
GPIO.setup(GPIO_TRIGGER, GPIO.OUT)
GPIO.setup(GPIO_ECHO, GPIO.IN)
```
3. 定义测量距离的函数
```python
def measure_distance():
GPIO.output(GPIO_TRIGGER, False)
time.sleep(0.5)
GPIO.output(GPIO_TRIGGER, True)
time.sleep(0.00001)
GPIO.output(GPIO_TRIGGER, False)
start = time.time()
while GPIO.input(GPIO_ECHO) == 0:
start = time.time()
while GPIO.input(GPIO_ECHO) == 1:
stop = time.time()
elapsed = stop - start
distance = (elapsed * 34300) / 2
return distance
```
4. 定义TensorFlow模型加载函数
```python
def load_model():
model = tf.keras.models.load_model('model_path')
return model
```
5. 定义图像预处理函数
```python
def preprocess_image(image):
image = tf.image.resize(image, [224, 224])
image = image / 255.0
return image
```
6. 初始化TensorFlow模型
```python
model = load_model()
```
7. 启动摄像头,并进行测量和预测
```python
with picamera.PiCamera() as camera:
camera.start_preview()
time.sleep(2)
while True:
camera.capture('image.jpg') # 拍摄图像保存为image.jpg
image = tf.keras.preprocessing.image.load_img('image.jpg')
image_array = tf.keras.preprocessing.image.img_to_array(image)
processed_image = preprocess_image(image_array)
processed_image = np.expand_dims(processed_image, axis=0)
prediction = model.predict(processed_image)
distance = measure_distance()
print('米桶储量: {} cm, 预测结果: {}'.format(distance, prediction))
time.sleep(1)
```
这段代码通过树莓派的摄像头拍摄图像,然后将图像进行预处理,并使用加载的TensorFlow模型对图像进行预测,同时测量米桶的储量。最后打印出储量和预测结果。代码中的`model_path`需要替换为你实际的模型路径。
阅读全文
相关推荐











