def mcp_loss(y_true, y_pred): """ 计算单调性约束损失函数在所有样本和时刻上的平均值 """ batch_size=64 num_timesteps=6 delta_p = tf.random.uniform(shape=(batch_size, num_timesteps, 15), minval=0, maxval=1) p = inputs[:, :, -15:] # 取原始输入数据的最后15列作为 p p_new = p + delta_p newinputs = tf.concat([inputs[:, :, 0:1], p_new], axis=-1) y_pred_ = model(newinputs) y_true_ = model(inputs) return tf.keras.losses.mean_squared_error(y_true_, y_pred_) def combined_loss(y_true, y_pred): """ 组合MSE损失函数和单调性约束损失函数的新损失函数 """ alpha = 0.5 # 可以根据需要进行调整 mse_loss = mean_squared_error(y_true, y_pred) mcp_loss_val = mcp_loss(y_true, y_pred) return alpha * mse_loss + (1 - alpha) * mcp_loss_val将以上代码修改为kera能识别的代码
时间: 2024-02-20 22:57:27 浏览: 86
13. 常见的损失函数及改进1
下面是修改后的代码:
```python
import tensorflow as tf
from tensorflow.keras.losses import mean_squared_error
def mcp_loss(y_true, y_pred):
"""
计算单调性约束损失函数在所有样本和时刻上的平均值
"""
batch_size=64
num_timesteps=6
delta_p = tf.random.uniform(shape=(batch_size, num_timesteps, 15), minval=0, maxval=1)
p = inputs[:, :, -15:] # 取原始输入数据的最后15列作为 p
p_new = p + delta_p
newinputs = tf.concat([inputs[:, :, 0:1], p_new], axis=-1)
y_pred_ = model(newinputs)
y_true_ = model(inputs)
return mean_squared_error(y_true_, y_pred_)
def combined_loss(y_true, y_pred):
"""
组合MSE损失函数和单调性约束损失函数的新损失函数
"""
alpha = 0.5 # 可以根据需要进行调整
mse_loss = mean_squared_error(y_true, y_pred)
mcp_loss_val = mcp_loss(y_true, y_pred)
return alpha * mse_loss + (1 - alpha) * mcp_loss_val
```
阅读全文