帮我写一个基于transformer的图像分类代码,附上注释
时间: 2023-07-25 07:04:54 浏览: 112
好的,以下是基于Transformer的图像分类代码,注释在代码中:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
# 定义Transformer Encoder层
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
# Multi-Head Attention
src2 = self.self_attn(src, src, src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
# Layer Normalization
src = self.norm1(src + self.dropout1(src2))
# Feed Forward Network
src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
# Dropout
src = self.norm2(src + self.dropout2(src2))
return src
# 定义Transformer Encoder模块
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([encoder_layer for i in range(num_layers)])
self.num_layers = num_layers
self.norm = norm
def forward(self, src, mask=None, src_key_padding_mask=None):
output = src
for layer in self.layers:
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
return output
# 定义Transformer模型
class TransformerModel(nn.Module):
def __init__(self, d_model, nhead, num_layers, num_classes):
super(TransformerModel, self).__init__()
self.embedding = nn.Linear(224 * 224 * 3, d_model)
self.encoder = TransformerEncoder(TransformerEncoderLayer(d_model, nhead), num_layers)
self.fc = nn.Linear(d_model, num_classes)
def forward(self, x):
# 将图像展开成一维向量
x = x.view(x.size(0), -1)
# 进行embedding
x = self.embedding(x)
# Transformer Encoder
x = self.encoder(x)
# 全连接层
x = self.fc(x[:, 0, :])
return x
```
这里的代码是一个简单的图像分类模型,使用Transformer Encoder来提取图像特征,并使用全连接层来进行分类。需要注意的是,这里的输入是224x224x3大小的图像,经过线性变换之后变成了一维向量,因此需要将图像展开成一维向量再进行embedding。
阅读全文