typedef struct{ VerT from; VerT to; //VerT vertex; //通常VerT等于char int weight; } MinSpanTreeEdge; //最小生成树的结构体 typedef struct{ int fromIndex; //边U的出发点 int weight; }LowCostEdge; void Prime(AdjMGraph G, MinSpanTreeEdge closeVertex[]){ VerT v1,v2; int n = G.Vertices.size, minCost; LowCostEdge *lowCost = (LowCostEdge *)malloc(sizeof(LowCostEdge)*n); int i, j, k; for(i = 1; i < n; i ++) lowCost[i].fromIndex=0; lowCost[i].weight=G.edge[0][i]; /*从顶点0出发构造最小生成树*/ ListGet(G.Vertices, 0, &v1); closeVertex[0].from= v1; lowCost[0].weight = -1; for(i = 1;i < n;i++){ /*寻找当前最小权值的边所对应的弧头顶点k*/ minCost = MaxWeight; for(j = 1; j < n; j++){ if(lowCost[j].weight < minCost && lowCost[j].weight > 0) { minCost = lowCost[j].weight; k = j; } } ListGet(G.Vertices, lowCost[k].fromIndex, &v1); ListGet(G.Vertices,k, &v2); closeVertex[i].from= v1; closeVertex[i].to= v2; closeVertex[i].weight = minCost; lowCost[k].weight = -1; for(j = 1; j < n; j++) { //调整lowcost的值 if(G.edge[k][j] < lowCost[j].weight){ lowCost[j].fromIndex = k; lowCost[j].weight = G.edge[k][j]; } } } }若以此方式实现的最小生成树该怎么输出,请给出示例
时间: 2024-01-19 22:04:22 浏览: 124
可以按照如下方式输出最小生成树的信息:
```C++
void printMinSpanTree(MinSpanTreeEdge closeVertex[], int n) {
int totalWeight = 0;
for(int i = 0; i < n; i++) {
cout << "Edge " << i << ": " << closeVertex[i].from << " - " << closeVertex[i].to << " (weight: " << closeVertex[i].weight << ")" << endl;
totalWeight += closeVertex[i].weight;
}
cout << "Total weight of minimum spanning tree: " << totalWeight << endl;
}
```
其中,`closeVertex` 是最小生成树的边集数组,`n` 是边集数组的大小。每次输出一条边的起点、终点和权值,最后输出最小生成树的总权值即可。
相关问题
typedef struct{ VerT from; VerT to; //VerT vertex; //通常VerT等于char int weight; } MinSpanTreeEdge; //最小生成树的结构体 typedef struct{ int fromIndex; //边U的出发点 int weight; }LowCostEdge; void Prime(AdjMGraph G, MinSpanTreeEdge closeVertex[]){ VerT v1,v2; int n = G.Vertices.size, minCost; LowCostEdge *lowCost = (LowCostEdge *)malloc(sizeof(LowCostEdge)*n); int i, j, k; for(i = 1; i < n; i ++) lowCost[i].fromIndex=0; lowCost[i].weight=G.edge[0][i]; /从顶点0出发构造最小生成树/ ListGet(G.Vertices, 0, &v1); closeVertex[0].from= v1; lowCost[0].weight = -1; for(i = 1;i < n;i++){ /寻找当前最小权值的边所对应的弧头顶点k/ minCost = MaxWeight; for(j = 1; j < n; j++){ if(lowCost[j].weight < minCost && lowCost[j].weight > 0) { minCost = lowCost[j].weight; k = j; } } ListGet(G.Vertices, lowCost[k].fromIndex, &v1); ListGet(G.Vertices,k, &v2); closeVertex[i].from= v1; closeVertex[i].to= v2; closeVertex[i].weight = minCost; lowCost[k].weight = -1; for(j = 1; j < n; j++) { //调整lowcost的值 if(G.edge[k][j] < lowCost[j].weight){ lowCost[j].fromIndex = k; lowCost[j].weight = G.edge[k][j]; } } } }若以此方式实现的最小生成树该怎么输出,请给出示例用C语言
可以按照如下方式输出最小生成树的信息:
```C
void printMinSpanTree(MinSpanTreeEdge closeVertex[], int n) {
int totalWeight = 0;
for(int i = 0; i < n; i++) {
printf("Edge %d: %c - %c (weight: %d)\n", i, closeVertex[i].from, closeVertex[i].to, closeVertex[i].weight);
totalWeight += closeVertex[i].weight;
}
printf("Total weight of minimum spanning tree: %d\n", totalWeight);
}
```
其中,`closeVertex` 是最小生成树的边集数组,`n` 是边集数组的大小。每次输出一条边的起点、终点和权值,最后输出最小生成树的总权值即可。
注意:这里假设顶点的类型为 `char` 类型,如果顶点的类型不是 `char`,需要相应地修改输出语句。
阅读全文