yolov5怎么进行自定义反馈
时间: 2023-07-11 07:29:48 浏览: 108
在 YOLOv5 中,自定义反馈可以通过编写 Python 脚本来实现。具体来说,可以通过在 `detect.py` 脚本中添加自定义的回调函数来实现反馈。回调函数可以在每次检测到目标时被调用,获取目标的位置、类别、置信度等信息,并按照用户定义的方式进行处理、分析和展示。
下面是一个简单的示例,演示了如何通过回调函数在控制台上输出检测结果:
```python
import argparse
import cv2
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, xyxy2xywh
from utils.plots import plot_one_box
from utils.torch_utils import select_device
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
# Load model
device = select_device(opt.device)
model = attempt_load(weights, map_location=device)
names = model.module.names if hasattr(model, 'module') else model.names
half = device.type != 'cpu'
# Set Dataloader
vid_path, vid_writer = None, None
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))
cap = cv2.VideoCapture(source)
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
img = letterbox(frame, new_shape=imgsz)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
# Inference
img = torch.from_numpy(img).to(device)
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_sync()
pred = model(img, augment=True)[0]
t2 = torch_utils.time_sync()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=None, agnostic=False)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0 = path[i], '', frame
save_path = str(Path(save_dir) / Path(p).name)
txt_path = str(Path(save_dir) / Path(p).stem) + ('_%g' % dataset.frame if dataset is not None else '') + '.txt'
if save_img or view_img: # Add bbox to image
plot_one_box(xyxy, im0, label=label, color=color, line_thickness=3)
print(f"Detected object: {label}, confidence: {score}, coordinates: {xyxy}")
if save_txt: # Write to file
with open(txt_path, 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xyxy, score))
if view_img: # Show live image
cv2.imshow("frame", im0)
if cv2.waitKey(1) & 0xFF == ord('q'): # Exit if 'q' is pressed
break
else:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
with torch.no_grad():
detect()
```
在上述代码中,可以在 `plot_one_box` 函数中添加自定义的处理逻辑。例如,可以在该函数中将目标的位置、类别、置信度等信息输出到控制台,或者保存到文件中。注意,`plot_one_box` 函数接受的参数包括目标的坐标、类别、置信度和颜色等信息,可以根据需要进行调整。
阅读全文
相关推荐


















