array_key_exists('call', $pa) 解释
时间: 2024-01-24 21:04:06 浏览: 71
该函数用于检查数组中是否存在指定的键名。它接受两个参数,第一个参数是要检查的键名,第二个参数是要检查的数组。如果键名存在于数组中,则返回 true,否则返回 false。
例如,如果 $pa 是一个数组,我们可以使用以下代码检查它是否有一个名为 "call" 的键:
if (array_key_exists('call', $pa)) {
// 如果 'call' 存在于 $pa 数组中,执行相应的代码
} else {
// 如果 'call' 不存在于 $pa 数组中,执行相应的代码
}
相关问题
写出文档中的伪代码,并加以解释
### 文档中的伪代码及其解释
#### 1. 模型定义
**AlexNet_v1 模型**
```python
def AlexNet_v1(im_height=224, im_width=224, num_classes=1000):
input_image = layers.Input(shape=(im_height, im_width, 3), dtype="float32")
x = layers.ZeroPadding2D(((1, 2), (1, 2)))(input_image)
x = layers.Conv2D(48, kernel_size=11, strides=4, activation="relu")(x)
x = layers.MaxPool2D(pool_size=3, strides=2)(x)
x = layers.Conv2D(128, kernel_size=5, padding="same", activation="relu")(x)
x = layers.MaxPool2D(pool_size=3, strides=2)(x)
x = layers.Conv2D(192, kernel_size=3, padding="same", activation="relu")(x)
x = layers.Conv2D(192, kernel_size=3, padding="same", activation="relu")(x)
x = layers.Conv2D(128, kernel_size=3, padding="same", activation="relu")(x)
x = layers.MaxPool2D(pool_size=3, strides=2)(x)
x = layers.Flatten()(x)
x = layers.Dropout(0.2)(x)
x = layers.Dense(2048, activation="relu")(x)
x = layers.Dropout(0.2)(x)
x = layers.Dense(2048, activation="relu")(x)
x = layers.Dense(num_classes)(x)
predict = layers.Softmax()(x)
model = models.Model(inputs=input_image, outputs=predict)
return model
```
**AlexNet_v2 模型**
```python
class AlexNet_v2(Model):
def __init__(self, num_classes=1000):
super(AlexNet_v2, self).__init__()
self.features = Sequential([
layers.ZeroPadding2D(((1, 2), (1, 2))),
layers.Conv2D(48, kernel_size=11, strides=4, activation="relu"),
layers.MaxPool2D(pool_size=3, strides=2),
layers.Conv2D(128, kernel_size=5, padding="same", activation="relu"),
layers.MaxPool2D(pool_size=3, strides=2),
layers.Conv2D(192, kernel_size=3, padding="same", activation="relu"),
layers.Conv2D(192, kernel_size=3, padding="same", activation="relu"),
layers.Conv2D(128, kernel_size=3, padding="same", activation="relu"),
layers.MaxPool2D(pool_size=3, strides=2)
])
self.flatten = layers.Flatten()
self.classifier = Sequential([
layers.Dropout(0.2),
layers.Dense(1024, activation="relu"),
layers.Dropout(0.2),
layers.Dense(128, activation="relu"),
layers.Dense(num_classes),
layers.Softmax()
])
def call(self, inputs, **kwargs):
x = self.features(inputs)
x = self.flatten(x)
x = self.classifier(x)
return x
```
**解释:**
- **输入层**:接受224x224的RGB图像。
- **卷积层**:多个卷积层用于提取特征,每个卷积层后面通常跟着一个最大池化层,以减少特征图的尺寸。
- **展平层**:将多维特征图展平成一维向量,以便输入全连接层。
- **全连接层**:多个全连接层用于分类,中间加入Dropout层防止过拟合。
- **输出层**:最后一个全连接层输出分类概率,使用Softmax激活函数。
#### 2. 数据准备
```python
data_root = os.path.abspath(os.path.join(os.getcwd(), "../"))
image_path = os.path.join(data_root, "data_set", "flower_data")
train_dir = os.path.join(image_path, "train")
validation_dir = os.path.join(image_path, "val")
assert os.path.exists(train_dir), "cannot find {}".format(train_dir)
assert os.path.exists(validation_dir), "cannot find {}".format(validation_dir)
if not os.path.exists("save_weights"):
os.makedirs("save_weights")
im_height = 224
im_width = 224
batch_size = 32
epochs = 33
train_image_generator = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True)
validation_image_generator = ImageDataGenerator(rescale=1. / 255)
train_data_gen = train_image_generator.flow_from_directory(
directory=train_dir,
batch_size=batch_size,
shuffle=True,
target_size=(im_height, im_width),
class_mode='categorical'
)
total_train = train_data_gen.n
class_indices = train_data_gen.class_indices
inverse_dict = dict((val, key) for key, val in class_indices.items())
json_str = json.dumps(inverse_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
val_data_gen = validation_image_generator.flow_from_directory(
directory=validation_dir,
batch_size=batch_size,
shuffle=False,
target_size=(im_height, im_width),
class_mode='categorical'
)
total_val = val_data_gen.n
print("using {} images for training, {} images for validation.".format(total_train, total_val))
```
**解释:**
- **数据路径**:设定数据集的路径,包括训练集和验证集的路径。
- **数据生成器**:使用 `ImageDataGenerator` 对图像进行预处理和数据增强。
- **数据加载**:从目录中生成训练和验证数据,设置图像大小和标签模式。
- **类别索引**:保存类别索引到 JSON 文件,便于后续使用。
#### 3. 模型编译和训练
```python
model = AlexNet_v2(num_classes=5)
model.build((batch_size, 224, 224, 3))
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0005),
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),
metrics=["accuracy"])
callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath='./save_weights/myAlex.h5',
save_best_only=True,
save_weights_only=True,
monitor='val_loss')]
history = model.fit(x=train_data_gen,
steps_per_epoch=total_train // batch_size,
epochs=epochs,
validation_data=val_data_gen,
validation_steps=total_val // batch_size,
callbacks=callbacks)
history_dict = history.history
train_loss = history_dict["loss"]
train_accuracy = history_dict["accuracy"]
val_loss = history_dict["val_loss"]
val_accuracy = history_dict["val_accuracy"]
plt.figure()
plt.plot(range(epochs), train_loss, label='train_loss')
plt.plot(range(epochs), val_loss, label='val_loss')
plt.legend()
plt.xlabel('epochs')
plt.ylabel('loss')
plt.figure()
plt.plot(range(epochs), train_accuracy, label='train_accuracy')
plt.plot(range(epochs), val_accuracy, label='val_accuracy')
plt.legend()
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.show()
```
**解释:**
- **模型编译**:选择优化器、损失函数和评估指标。
- **回调函数**:设置模型检查点,保存最佳模型权重。
- **模型训练**:使用训练数据生成器进行训练,同时在验证集上评估模型性能。
- **训练历史**:提取训练和验证的损失及准确率数据,绘制训练过程的图表。
#### 4. 模型预测
```python
im_height = 224
im_width = 224
img_path = "./1.png"
assert os.path.exists(img_path), "file: '{}' does not exist.".format(img_path)
img = Image.open(img_path)
img = img.resize((im_width, im_height))
plt.imshow(img)
img = np.array(img) / 255.
img = np.expand_dims(img, 0)
json_path = './class_indices.json'
assert os.path.exists(json_path), "file: '{}' does not exist.".format(json_path)
with open(json_path, "r") as f:
class_indict = json.load(f)
model = AlexNet_v2(num_classes=5)
weighs_path = "./save_weights/myAlex.h5"
assert os.path.exists(weighs_path), "file: '{}' does not exist.".format(weighs_path)
model.build((32, 224, 224, 3))
model.load_weights(weighs_path)
result = np.squeeze(model.predict(img))
predict_class = np.argmax(result)
print_res = "Types of flowers: {} Probability: {:.3f}".format(class_indict[str(predict_class)], result[predict_class])
plt.title(print_res)
for i in range(len(result)):
print("Types of flowers: {:10} Probability: {:.3f}".format(class_indict[str(i)], result[i]))
plt.show()
```
**解释:**
- **图像加载**:加载待预测的图像,调整大小并归一化。
- **模型加载**:创建模型实例,加载训练好的权重。
- **预测**:对图像进行前向传播,获取预测结果。
- **结果显示**:打印预测结果并显示图像。
以上是文档中的主要代码逻辑及其解释。
阅读全文