def FGSM(self, x, y_true, y_target=None, eps=0.03, alpha=2/255, iteration=1): self.set_mode('eval') x = Variable(cuda(x, self.cuda), requires_grad=True) y_true = Variable(cuda(y_true, self.cuda), requires_grad=False) if y_target is not None: targeted = True y_target = Variable(cuda(y_target, self.cuda), requires_grad=False) else: targeted = False h = self.net(x) prediction = h.max(1)[1] accuracy = torch.eq(prediction, y_true).float().mean() cost = F.cross_entropy(h, y_true) if iteration == 1: if targeted: x_adv, h_adv, h = self.attack.fgsm(x, y_target, True, eps) else: x_adv, h_adv, h = self.attack.fgsm(x, y_true, False, eps) else: if targeted: x_adv, h_adv, h = self.attack.i_fgsm(x, y_target, True, eps, alpha, iteration) else: x_adv, h_adv, h = self.attack.i_fgsm(x, y_true, False, eps, alpha, iteration) prediction_adv = h_adv.max(1)[1] accuracy_adv = torch.eq(prediction_adv, y_true).float().mean() cost_adv = F.cross_entropy(h_adv, y_true) # make indication of perturbed images that changed predictions of the classifier if targeted: changed = torch.eq(y_target, prediction_adv) else: changed = torch.eq(prediction, prediction_adv) changed = torch.eq(changed, 0) changed = changed.float().view(-1, 1, 1, 1).repeat(1, 3, 28, 28) changed[:, 0, :, :] = where(changed[:, 0, :, :] == 1, 252, 91) changed[:, 1, :, :] = where(changed[:, 1, :, :] == 1, 39, 252) changed[:, 2, :, :] = where(changed[:, 2, :, :] == 1, 25, 25) changed = self.scale(changed/255) changed[:, :, 3:-2, 3:-2] = x_adv.repeat(1, 3, 1, 1)[:, :, 3:-2, 3:-2] self.set_mode('train') return x_adv.data, changed.data,\ (accuracy.item(), cost.item(), accuracy_adv.item(), cost_adv.item())
时间: 2024-01-08 20:03:23 浏览: 87
这段代码是一个实现了FGSM(Fast Gradient Sign Method)攻击的函数。FGSM是一种用于生成对抗样本的方法,通过在输入样本上添加一小步扰动来欺骗分类器,使其产生错误的分类结果。
该函数的输入参数包括原始输入样本x、真实标签y_true、目标标签y_target(可选)、扰动范围eps、扰动步长alpha和迭代次数iteration。
函数首先将模型设置为评估模式,然后将输入样本转化为可求导变量,并计算原始样本在模型上的预测结果和准确率。然后计算原始样本在模型上的交叉熵损失。
接下来根据迭代次数选择使用FGSM攻击还是I-FGSM(Iterative FGSM)攻击。如果目标标签y_target存在,则使用目标攻击,否则使用非目标攻击。攻击过程中,对输入样本添加扰动,并计算扰动后的样本在模型上的预测结果和准确率。
最后,将产生的对抗样本、扰动图像、原始样本在模型上的准确率和损失作为输出返回。
值得注意的是,代码中还包含了一个用于生成扰动图像的部分。首先根据模型预测结果确定哪些样本的分类结果发生了变化,然后将这些样本的对应像素位置修改为特定的颜色值,以突出显示扰动部分。最后将扰动图像与对抗样本叠加,形成最终的扰动图像。
请问我还能为您解答其他问题吗?
相关问题
def batch_generate(inputs, labels, eps, batch_size): # 对数据集进行处理 arr_x = inputs arr_y = labels len_x = len(inputs) batches = int(len_x / batch_size) res = [] for i in range(batches): x_batch = arr_x[i * batch_size: (i + 1) * batch_size] y_batch = arr_y[i * batch_size: (i + 1) * batch_size] adv_x = generate(x_batch, y_batch, eps=eps) res.append(adv_x) adv_x = np.concatenate(res, axis=0) return adv_x 这段代码什么意思
这段代码实现了一个对整个数据集进行FGSM攻击的函数。其中,`inputs`表示原始的输入数据集,`labels`表示对应的标签集,`eps`表示扰动的大小,`batch_size`表示每个批次的大小。
该函数首先对输入的数据集进行一些处理,将`inputs`和`labels`转换为Numpy数组类型,计算数据集的长度`len_x`,以及批次数`batches`。然后,对每个批次进行处理,在FGSM攻击函数`generate`中调用当前批次的数据和标签,得到对抗样本`adv_x`,并将其存入`res`数组中。最后,将所有批次的对抗样本连接起来,得到整个数据集的对抗样本`adv_x`,并返回结果。
该函数的作用是对整个数据集进行FGSM攻击,并生成对抗样本,用于评估模型的鲁棒性。
def generate(inputs, labels, eps): # 实现FGSM inputs_tensor = ms.Tensor(inputs) labels_tensor = ms.Tensor(labels) gradient = gradient_func(inputs_tensor, labels_tensor) # 产生扰动 perturbation = eps * gradient # 生成受到扰动的图片 adv_x = inputs + perturbation return adv_x这段代码什么意思
这段代码实现了一个生成受到FGSM(Fast Gradient Sign Method)攻击的对抗样本的函数。其中,`inputs`表示原始的输入数据,`labels`表示对应的标签,`eps`表示扰动的大小。
该函数首先将`inputs`和`labels`转换为MindSpore中的张量类型,然后调用上一个问题中实现的`gradient_func`函数,对输入的`inputs_tensor`和`labels_tensor`求取梯度。得到梯度后,根据FGSM方法的原理,产生扰动的过程是将梯度进行符号化处理,并乘上扰动大小`eps`。最后,将扰动加到原始输入上,得到受到攻击的对抗样本`adv_x`,返回结果。
FGSM攻击是一种简单高效的对抗攻击方法,它通过在输入数据上添加微小的扰动,使得深度神经网络的输出产生误分类。
阅读全文