train_region = cov(i-guard_cells-training_cells:i+guard_cells+training_cells, j-guard_cells-training_cells:j+guard_cells+training_cells);
时间: 2023-06-14 15:07:48 浏览: 92
这行代码是在一个二维矩阵中选取一个子矩阵,子矩阵的左上角坐标是 (i-guard_cells-training_cells, j-guard_cells-training_cells),右下角坐标是 (i+guard_cells+training_cells, j+guard_cells+training_cells)。这个子矩阵被称为训练区域(train_region),它的大小是 (2*guard_cells+1+2*training_cells) x (2*guard_cells+1+2*training_cells)。这个矩阵通常用于图像处理中的滤波操作,例如计算某一像素周围像素的平均值或者方差等。
相关问题
function [detections] = polsar_cfar_detector(cov, guard_cells, training_cells, threshold_factor)% Inputs:% cov - POLSAR covariance matrix% guard_cells - number of guard cells in each direction% training_cells - number of training cells in each direction% threshold_factor - threshold factor for the CFAR algorithm%% Outputs:% detections - a binary image indicating the detected targets% Get the dimensions of the covariance matrix[M, N] = size(cov);% Calculate the number of cells used in the CFAR algorithmtotal_cells = (2*guard_cells+2*training_cells+1)^2;training_cells_per_group = 2*training_cells+1;guard_cells_per_group = 2*guard_cells+1;% Initialize the output imagedetections = zeros(M,N);% Loop over each pixel in the imagefor i = 1+guard_cells:M-guard_cells for j = 1+guard_cells:N-guard_cells % Extract the training region train_region = cov(i-guard_cells-training_cells:i+guard_cells+training_cells, j-guard_cells-training_cells:j+guard_cells+training_cells); % Calculate the threshold using the CFAR algorithm sorted_train_region = sort(train_region(:)); noise = mean(sorted_train_region(1:total_cells-training_cells_per_group*guard_cells_per_group)); threshold = threshold_factor*noise; % Check if the current pixel is greater than the threshold if cov(i,j) > threshold detections(i,j) = 1; end endendend
这是一个 POLSAR CFAR 检测器的 MATLAB 实现。CFAR (Constant False Alarm Rate) 是一种早期的雷达目标检测算法,其目标是保证在一定误检率下,能够尽可能地检测到目标。
该函数接收四个输入参数:
- POLSAR 协方差矩阵 cov
- 保护单元 (guard cells) 的数量 guard_cells
- 训练单元 (training cells) 的数量 training_cells
- 阈值因子 threshold_factor
其中,guard_cells 和 training_cells 的数量用于定义 CFAR 算法中的检测窗口。阈值因子 threshold_factor 用于计算阈值,通常情况下,该值会被设置为一个经验值。
该函数的输出为一个二进制图像 detections,其中为 1 的像素点表示检测到了目标,为 0 的像素点表示没有检测到目标。
该函数的实现过程为:对于图像中的每一个像素,以其为中心提取一个检测窗口,并在该窗口内进行 CFAR 算法计算。具体来说,首先从该窗口内提取 training_cells 个单元的数据,并按照从小到大的顺序进行排序,然后取出前 total_cells-training_cells_per_group*guard_cells_per_group 个数据进行平均,作为噪声强度的估计。最后,将阈值因子乘以该噪声强度的估计值,得到该窗口的检测阈值,如果当前像素点的值大于该阈值,则认为检测到了目标,将 detections 中对应的像素点标记为 1。
function [detections] = polsar_cfar_detector(cov, params) % Inputs: % cov - POLSAR covariance matrix % params - an array containing the values of guard_cells, training_cells, threshold_factor % % Outputs: % detections - a binary image indicating the detected targets % Get the dimensions of the covariance matrix [M, N] = size(cov); % Calculate the number of cells used in the CFAR algorithm total_cells = (2params(1)+2params(2)+1)^2; training_cells_per_group = 2params(2)+1; guard_cells_per_group = 2params(1)+1; % Initialize the output image detections = zeros(M,N); % Loop over each pixel in the image for i = 1+params(1):M-params(1) for j = 1+params(1):N-params(1) % Extract the training region train_region = cov(i-params(1)-params(2):i+params(1)+params(2), j-params(1)-params(2):j+params(1)+params(2)); % Calculate the threshold using the CFAR algorithm sorted_train_region = sort(train_region(:)); noise = mean(sorted_train_region(1:total_cells-training_cells_per_group*guard_cells_per_group)); threshold = params(3)*noise; % Check if the current pixel is greater than the threshold if cov(i,j) > threshold detections(i,j) = 1; end end end end优化使该功能函数输入只有一个协方差矩阵
function [detections] = polsar_cfar_detector(cov, params) % Inputs: % cov - POLSAR covariance matrix % params - an array containing the values of guard_cells, training_cells, threshold_factor % % Outputs: % detections - a binary image indicating the detected targets % Get the dimensions of the covariance matrix [M, N] = size(cov); % Calculate the number of cells used in the CFAR algorithm total_cells = (2*params(1)+2*params(2)+1)^2; training_cells_per_group = 2*params(2)+1; guard_cells_per_group = 2*params(1)+1; % Initialize the output image detections = zeros(M,N); % Loop over each pixel in the image for i = 1+params(1):M-params(1) for j = 1+params(1):N-params(1) % Extract the training region train_region = cov(i-params(1)-params(2):i+params(1)+params(2), j-params(1)-params(2):j+params(1)+params(2)); % Calculate the threshold using the CFAR algorithm sorted_train_region = sort(train_region(:)); noise = mean(sorted_train_region(1:total_cells-training_cells_per_group*guard_cells_per_group)); threshold = params(3)*noise; % Check if the current pixel is greater than the threshold if cov(i,j) > threshold detections(i,j) = 1; end end end end
阅读全文