Lasso筛选后original_glcm_ClusterShade -0.023833 wavelet-LL_firstorder_90Percentile -0.139712 wavelet-LL_glrlm_RunEntropy -0.026165 original_glrlm_LongRunHighGrayLevelEmphasis -0.078956 original_firstorder_90Percentile -0.000259 gradient_glcm_MCC -0.041576 wavelet-HL_firstorder_Mean 0.037306 解释上述结果
时间: 2024-02-14 16:25:35 浏览: 85
这些结果是通过Lasso筛选后的特征重要性得出的。Lasso是一种特征选择方法,它通过线性回归模型和L1正则化来选择对目标变量有最大预测能力的特征。
在这些结果中,每个特征都有一个相关的系数。系数越接近零,表示该特征对目标变量的影响越小。正的系数表示该特征与目标变量正相关,负的系数表示负相关。
根据这些结果,可以看出以下几点解释:
1. original_glcm_ClusterShade对目标变量的影响较小,其系数为-0.023833。
2. wavelet-LL_firstorder_90Percentile对目标变量的影响较小,其系数为-0.139712。
3. wavelet-LL_glrlm_RunEntropy对目标变量的影响较小,其系数为-0.026165。
4. original_glrlm_LongRunHighGrayLevelEmphasis对目标变量的影响较小,其系数为-0.078956。
5. original_firstorder_90Percentile对目标变量的影响几乎可以忽略,其系数为-0.000259。
6. gradient_glcm_MCC对目标变量的影响较小,其系数为-0.041576。
7. wavelet-HL_firstorder_Mean对目标变量的影响较小,其系数为0.037306。
需要注意的是,系数的绝对值大小并不能直接表示特征的重要性。在进行特征选择时,还需要考虑其他因素,如特征之间的相关性和模型的性能表现等。因此,这些结果只是一种初步的特征筛选结果,需要结合实际情况进行综合考虑。
相关问题
用Lasso算法筛选出如下特征及相关系数,square_glrlm_GrayLevelNonUniformityNormalized 0.065557 exponential_glszm_GrayLevelNonUniformityNormalized 0.040677 wavelet-LH_firstorder_Mean 0.036634 square_firstorder_Kurtosis 0.007668 lbp-2D_glszm_SmallAreaLowGrayLevelEmphasis 0.022560 logarithm_firstorder_InterquartileRange 0.052986 exponential_glrlm_RunVariance 0.044566 original_glrlm_LongRunHighGrayLevelEmphasis -0.058296 square_glrlm_GrayLevelVariance -0.059374,请用影像组学特征结合临床来解释上述结果
根据Lasso算法筛选出的特征及其相关系数,我们可以看到这些特征对目标变量可能具有不同程度的影响。以下是每个特征及其相关系数的解释:
1. square_glrlm_GrayLevelNonUniformityNormalized (0.065557): 这个特征表示图像的灰度级别的非均匀性,具有较小的正相关关系。较高的数值表示图像中不同灰度级别的分布更加不均匀。
2. exponential_glszm_GrayLevelNonUniformityNormalized (0.040677): 这个特征表示图像的灰度级别的非均匀性,具有较小的正相关关系。较高的数值表示图像中不同灰度级别的分布更加不均匀。
3. wavelet-LH_firstorder_Mean (0.036634): 这个特征表示图像经过小波变换后,低频子带的平均灰度值,具有较小的正相关关系。较高的数值表示低频子带的平均灰度值较高。
4. square_firstorder_Kurtosis (0.007668): 这个特征表示图像灰度直方图的峰度,具有较小的正相关关系。较高的数值表示图像灰度级别分布的峰度较高,即灰度级别的集中程度较高。
5. lbp-2D_glszm_SmallAreaLowGrayLevelEmphasis (0.022560): 这个特征表示图像中小尺度局部二值模式的低灰度级别的强调程度,具有较小的正相关关系。较高的数值表示图像中小尺度局部二值模式中低灰度级别的出现频率较高。
6. logarithm_firstorder_InterquartileRange (0.052986): 这个特征表示图像灰度级别的四分位差的对数值,具有较大的正相关关系。较高的数值表示图像灰度级别的变化范围较大。
7. exponential_glrlm_RunVariance (0.044566): 这个特征表示灰度共生矩阵运行长度的方差,具有较小的正相关关系。较高的数值表示图像中运行长度的变化范围较大。
8. original_glrlm_LongRunHighGrayLevelEmphasis (-0.058296): 这个特征表示灰度共生矩阵长运行高灰度级别的强调程度,具有较小的负相关关系。较低的数值表示图像中长运行高灰度级别的出现频率较低。
9. square_glrlm_GrayLevelVariance (-0.059374): 这个特征表示灰度共生矩阵灰度级别的方差,具有较小的负相关关系。较低的数值表示图像中灰度级别的变化范围较小。
综上所述,这些特征与临床结果之间的关系需要进一步深入研究和解释。每个特征的具体含义和对应的临床意义会根据具体的应用场景而有所不同。
ImportError Traceback (most recent call last) <ipython-input-3-b25a42d5a266> in <module>() 8 from sklearn.preprocessing import StandardScaler,PowerTransformer 9 from sklearn.linear_model import LinearRegression,LassoCV,LogisticRegression ---> 10 from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor 11 from sklearn.model_selection import KFold,train_test_split,StratifiedKFold,GridSearchCV,cross_val_score 12 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score,accuracy_score, precision_score,recall_score, roc_auc_score ~\Anaconda3\lib\site-packages\sklearn\ensemble\__init__.py in <module>() 3 classification, regression and anomaly detection. 4 """ ----> 5 from ._base import BaseEnsemble 6 from ._forest import RandomForestClassifier 7 from ._forest import RandomForestRegressor ~\Anaconda3\lib\site-packages\sklearn\ensemble\_base.py in <module>() 16 from ..base import BaseEstimator 17 from ..base import MetaEstimatorMixin ---> 18 from ..tree import DecisionTreeRegressor, ExtraTreeRegressor 19 from ..utils import Bunch, _print_elapsed_time 20 from ..utils import check_random_state ~\Anaconda3\lib\site-packages\sklearn\tree\__init__.py in <module>() 4 """ 5 ----> 6 from ._classes import BaseDecisionTree 7 from ._classes import DecisionTreeClassifier 8 from ._classes import DecisionTreeRegressor ~\Anaconda3\lib\site-packages\sklearn\tree\_classes.py in <module>() 39 from ..utils.validation import check_is_fitted 40 ---> 41 from ._criterion import Criterion 42 from ._splitter import Splitter 43 from ._tree import DepthFirstTreeBuilder sklearn\tree\_criterion.pyx in init sklearn.tree._criterion() ImportError: DLL load failed: 找不到指定的模块。 怎么改
您好!根据您提供的错误信息,看起来是缺少了某个模块导致的错误。有两种可能的解决方案:
1. 检查是否安装了所需的模块。在这种情况下,您需要确保已经正确安装了 scikit-learn 库。您可以使用以下命令来安装最新版本的 scikit-learn:
```python
pip install -U scikit-learn
```
2. 如果已经安装了 scikit-learn,但仍然出现此错误,可能是由于库文件损坏或不兼容导致的。您可以尝试重新安装 scikit-learn,或者考虑卸载并重新安装整个 Anaconda 环境,以确保所有依赖项都正确安装和配置。
希望这些解决方案能够帮助您解决问题!如果您有任何其他问题,请随时提问。
阅读全文