Lasso筛选后original_glcm_ClusterShade -0.023833 wavelet-LL_firstorder_90Percentile -0.139712 wavelet-LL_glrlm_RunEntropy -0.026165 original_glrlm_LongRunHighGrayLevelEmphasis -0.078956 original_firstorder_90Percentile -0.000259 gradient_glcm_MCC -0.041576 wavelet-HL_firstorder_Mean 0.037306 解释上述结果

时间: 2024-02-14 16:25:35 浏览: 85
这些结果是通过Lasso筛选后的特征重要性得出的。Lasso是一种特征选择方法,它通过线性回归模型和L1正则化来选择对目标变量有最大预测能力的特征。 在这些结果中,每个特征都有一个相关的系数。系数越接近零,表示该特征对目标变量的影响越小。正的系数表示该特征与目标变量正相关,负的系数表示负相关。 根据这些结果,可以看出以下几点解释: 1. original_glcm_ClusterShade对目标变量的影响较小,其系数为-0.023833。 2. wavelet-LL_firstorder_90Percentile对目标变量的影响较小,其系数为-0.139712。 3. wavelet-LL_glrlm_RunEntropy对目标变量的影响较小,其系数为-0.026165。 4. original_glrlm_LongRunHighGrayLevelEmphasis对目标变量的影响较小,其系数为-0.078956。 5. original_firstorder_90Percentile对目标变量的影响几乎可以忽略,其系数为-0.000259。 6. gradient_glcm_MCC对目标变量的影响较小,其系数为-0.041576。 7. wavelet-HL_firstorder_Mean对目标变量的影响较小,其系数为0.037306。 需要注意的是,系数的绝对值大小并不能直接表示特征的重要性。在进行特征选择时,还需要考虑其他因素,如特征之间的相关性和模型的性能表现等。因此,这些结果只是一种初步的特征筛选结果,需要结合实际情况进行综合考虑。
相关问题

用Lasso算法筛选出如下特征及相关系数,square_glrlm_GrayLevelNonUniformityNormalized 0.065557 exponential_glszm_GrayLevelNonUniformityNormalized 0.040677 wavelet-LH_firstorder_Mean 0.036634 square_firstorder_Kurtosis 0.007668 lbp-2D_glszm_SmallAreaLowGrayLevelEmphasis 0.022560 logarithm_firstorder_InterquartileRange 0.052986 exponential_glrlm_RunVariance 0.044566 original_glrlm_LongRunHighGrayLevelEmphasis -0.058296 square_glrlm_GrayLevelVariance -0.059374,请用影像组学特征结合临床来解释上述结果

根据Lasso算法筛选出的特征及其相关系数,我们可以看到这些特征对目标变量可能具有不同程度的影响。以下是每个特征及其相关系数的解释: 1. square_glrlm_GrayLevelNonUniformityNormalized (0.065557): 这个特征表示图像的灰度级别的非均匀性,具有较小的正相关关系。较高的数值表示图像中不同灰度级别的分布更加不均匀。 2. exponential_glszm_GrayLevelNonUniformityNormalized (0.040677): 这个特征表示图像的灰度级别的非均匀性,具有较小的正相关关系。较高的数值表示图像中不同灰度级别的分布更加不均匀。 3. wavelet-LH_firstorder_Mean (0.036634): 这个特征表示图像经过小波变换后,低频子带的平均灰度值,具有较小的正相关关系。较高的数值表示低频子带的平均灰度值较高。 4. square_firstorder_Kurtosis (0.007668): 这个特征表示图像灰度直方图的峰度,具有较小的正相关关系。较高的数值表示图像灰度级别分布的峰度较高,即灰度级别的集中程度较高。 5. lbp-2D_glszm_SmallAreaLowGrayLevelEmphasis (0.022560): 这个特征表示图像中小尺度局部二值模式的低灰度级别的强调程度,具有较小的正相关关系。较高的数值表示图像中小尺度局部二值模式中低灰度级别的出现频率较高。 6. logarithm_firstorder_InterquartileRange (0.052986): 这个特征表示图像灰度级别的四分位差的对数值,具有较大的正相关关系。较高的数值表示图像灰度级别的变化范围较大。 7. exponential_glrlm_RunVariance (0.044566): 这个特征表示灰度共生矩阵运行长度的方差,具有较小的正相关关系。较高的数值表示图像中运行长度的变化范围较大。 8. original_glrlm_LongRunHighGrayLevelEmphasis (-0.058296): 这个特征表示灰度共生矩阵长运行高灰度级别的强调程度,具有较小的负相关关系。较低的数值表示图像中长运行高灰度级别的出现频率较低。 9. square_glrlm_GrayLevelVariance (-0.059374): 这个特征表示灰度共生矩阵灰度级别的方差,具有较小的负相关关系。较低的数值表示图像中灰度级别的变化范围较小。 综上所述,这些特征与临床结果之间的关系需要进一步深入研究和解释。每个特征的具体含义和对应的临床意义会根据具体的应用场景而有所不同。

ImportError Traceback (most recent call last) <ipython-input-3-b25a42d5a266> in <module>() 8 from sklearn.preprocessing import StandardScaler,PowerTransformer 9 from sklearn.linear_model import LinearRegression,LassoCV,LogisticRegression ---> 10 from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor 11 from sklearn.model_selection import KFold,train_test_split,StratifiedKFold,GridSearchCV,cross_val_score 12 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score,accuracy_score, precision_score,recall_score, roc_auc_score ~\Anaconda3\lib\site-packages\sklearn\ensemble\__init__.py in <module>() 3 classification, regression and anomaly detection. 4 """ ----> 5 from ._base import BaseEnsemble 6 from ._forest import RandomForestClassifier 7 from ._forest import RandomForestRegressor ~\Anaconda3\lib\site-packages\sklearn\ensemble\_base.py in <module>() 16 from ..base import BaseEstimator 17 from ..base import MetaEstimatorMixin ---> 18 from ..tree import DecisionTreeRegressor, ExtraTreeRegressor 19 from ..utils import Bunch, _print_elapsed_time 20 from ..utils import check_random_state ~\Anaconda3\lib\site-packages\sklearn\tree\__init__.py in <module>() 4 """ 5 ----> 6 from ._classes import BaseDecisionTree 7 from ._classes import DecisionTreeClassifier 8 from ._classes import DecisionTreeRegressor ~\Anaconda3\lib\site-packages\sklearn\tree\_classes.py in <module>() 39 from ..utils.validation import check_is_fitted 40 ---> 41 from ._criterion import Criterion 42 from ._splitter import Splitter 43 from ._tree import DepthFirstTreeBuilder sklearn\tree\_criterion.pyx in init sklearn.tree._criterion() ImportError: DLL load failed: 找不到指定的模块。 怎么改

您好!根据您提供的错误信息,看起来是缺少了某个模块导致的错误。有两种可能的解决方案: 1. 检查是否安装了所需的模块。在这种情况下,您需要确保已经正确安装了 scikit-learn 库。您可以使用以下命令来安装最新版本的 scikit-learn: ```python pip install -U scikit-learn ``` 2. 如果已经安装了 scikit-learn,但仍然出现此错误,可能是由于库文件损坏或不兼容导致的。您可以尝试重新安装 scikit-learn,或者考虑卸载并重新安装整个 Anaconda 环境,以确保所有依赖项都正确安装和配置。 希望这些解决方案能够帮助您解决问题!如果您有任何其他问题,请随时提问。
阅读全文

相关推荐

最新推荐

recommend-type

lasso-logistic程序示例.docx

Lasso-Logistic 回归模型在分析居民对传统小吃爱好程度的影响因素中的应用 本文通过利用 R 语言建立了 Lasso-Logistic 模型,研究了影响居民对传统小吃爱好程度的因素。该模型使用了 606 条观测数据,考察了 16 个...
recommend-type

机器学习试题-试卷.docx

在推导线性回归参数时,需要遵循的假设包括 X 与 Y 之间的线性关系、模型误差的独立性、误差服从 0 均值和固定标准差的正态分布、X 是非随机且测量没有误差的等。 五、图形选择 在观察测试 Y 与 X 之间的线性关系...
recommend-type

AMP_Tutorial_18.pdf

另一个是L1范数(Lasso回归),它倾向于产生稀疏解,即大部分系数为零,适用于特征选择。 【近似消息传递算法】 AMP(Approximate Message Passing)是压缩感知领域的一种高效算法,特别适用于处理高维稀疏信号的...
recommend-type

天池_二手车价格预测_Task4_建模调参

0️⃣ 前言 在二手车价格预测任务中,建模和参数调整是至关重要的步骤。这个任务旨在预测二手车的准确价格,帮助买家和卖家作出明智的决策。在进行建模时,我们需要考虑数据的质量、特征工程、模型选择以及模型优化...
recommend-type

regression shrinkage and selection via the lasso.pdf

《回归收缩与Lasso方法》 这篇论文由Robert Tibshirani在1996年发表,探讨了一种新的线性模型估计方法——Lasso(Least Absolute Shrinkage and Selection Operator)。Lasso方法的主要目标是在保持残差平方和尽...
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。