回归分析 回归系数、截距、残差方差
时间: 2023-09-12 19:10:48 浏览: 496
回归分析是一种用于建立因变量和自变量之间关系的统计方法。在回归分析中,我们通常使用线性回归模型来描述因变量和自变量之间的关系。在线性回归模型中,我们用回归系数和截距来描述自变量对因变量的影响。
回归系数是自变量的系数,用于描述自变量对因变量的影响。在简单线性回归中,回归系数就是自变量的斜率。在多元线性回归中,回归系数则是每个自变量的斜率。
截距是在自变量为0时,因变量的值。在简单线性回归中,截距是直线与y轴的交点。在多元线性回归中,截距则表示当所有自变量的值都为0时,因变量的值。
残差方差是用来评估模型对数据的拟合程度的指标。残差是指实际观测值与回归模型预测值之间的差异。残差方差则是残差的平方和除以自由度。残差方差越小,说明模型对数据的拟合程度越好。
在回归分析中,我们通常通过最小二乘法来估计回归系数和截距,通过残差方差来评估模型的拟合程度。
相关问题
A manufacturing company wants to study the relationship between advertising investment and sales volume. The following is the Excel output for regression based on market survey data. Please answer the questions based on the output results.某制造公司销售想研究广告投入与销售量之间的关系。下面是根据市场调查数据进行回归的EXcel输出。请根据输出结果回答问题。 SUMMARY OUTPUT输出汇总 Multiple R 0.9307 R Square 0.8662 Adjusted R Square 0.8280 Standard Error 2.0532 Observations 10 ANOVA方差分析 df SS MS Regressive analysis回归分析 1 190.9912 190.9912 Residual残差 8 29.5088 3.6886 Total总计 9 220.5000 斜率Coefficients 标准误差Standard Error Intercep截距 5.0642 2.6306 Advertising investment广告投入 1.8513 0.2814 i)Write a least squares regression equation for predicting sales volume based on advertising investment. 写出以广告投入来预测销售量的最小二乘回归方程 When the advertising investment is 1.9 million yuan, what is the sales volume? 当广告投入为190万元时,销售量为多少万件?
The least squares regression equation for predicting sales volume based on advertising investment is:
Sales Volume = 5.0642 + (1.8513 * Advertising Investment)
When the advertising investment is 1.9 million yuan, the sales volume can be calculated as follows:
Sales Volume = 5.0642 + (1.8513 * 1.9)
Sales Volume = 5.0642 + 3.51847
Sales Volume ≈ 8.58267 million units (rounded to the nearest million units)
阅读全文