pytorch中绘制混淆矩阵
时间: 2023-10-21 19:00:12 浏览: 125
您可以使用sklearn库中的confusion_matrix函数来计算和绘制混淆矩阵,代码示例如下:
```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
# 假设您有预测结果(predict)和真实标签(target)
predict = [...]
target = [...]
# 计算混淆矩阵
cm = confusion_matrix(target, predict)
# 绘制混淆矩阵
sns.heatmap(cm, annot=True, cmap='Blues')
plt.show()
```
其中,predict代表您的预测结果,target代表对应的真实标签。confusion_matrix函数会计算出混淆矩阵,sns库中的heatmap可以将混淆矩阵可视化出来。
相关问题
pytorch怎样绘制混淆矩阵
PyTorch中可以使用sklearn.metrics里的confusion_matrix函数来绘制混淆矩阵。
以下是绘制混淆矩阵的代码示例:
```python
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
# 计算混淆矩阵
y_true = [0, 1, 1, 0, 1, 1]
y_pred = [1, 0, 1, 0, 1, 0]
cm = confusion_matrix(y_true, y_pred)
# 可视化混淆矩阵
sns.heatmap(cm, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
```
其中,y_true为真实标签,y_pred为预测标签。在计算混淆矩阵后,使用seaborn库的heatmap函数进行可视化。其中,参数annot为True时,会在每个矩阵元素上显示对应的数值。cmap参数指定了使用的颜色。最后使用matplotlib.pyplot库的xlabel和ylabel函数添加标签并显示图像。
pytorch模型绘制混淆矩阵的代码
以下是绘制混淆矩阵的PyTorch代码示例:
```python
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
```
这段代码使用Matplotlib库和Scikit-learn库中的`confusion_matrix`函数来绘制混淆矩阵。在函数中,你需要提供真实标签`y_true`和预测标签`y_pred`,以及类别列表`classes`,它包含了你的模型预测的所有类别。你可以通过设置`normalize=True`来获得归一化的混淆矩阵。最后,使用`plt.show()`函数来显示混淆矩阵。
阅读全文