{if(!p)delete [] p;}

时间: 2023-12-18 11:04:49 浏览: 13
这是一个 C++ 语言中的代码片段,用于释放指针 p 所指向的动态分配内存空间。其中,if (!p) 表示判断指针 p 是否为空指针,如果为空指针则直接返回,不执行后续的操作;而 delete [] p 表示释放 p 所指向的数组型动态分配内存空间。需要注意的是,p 所指向的内存空间必须是通过 new [] 分配的,否则会导致未定义的行为。
相关问题

#include<iostream> using namespace std; typedef struct ElemType{ int key; }ElemType; typedef struct BSTNode{ ElemType data; BSTNode *lchild,*rchild; }BSTNode,*BSTree; int flag=1; void InsertBST(BSTree &T,ElemType e ) ;//实现细节隐藏 void CreateBST(BSTree &T ) ;//实现细节隐藏 void InOrderTraverse(BSTree &T);//中序遍历,实现细节隐藏 void DeleteBST(BSTree &T,char key) { BSTree p=T;BSTree f=NULL; BSTree q; BSTree s; while(p){ if (p->data.key == key) break; f=p; if (p->data.key> key) p=p->lchild; else p=p->rchild; } if(!p) ; if ((p->lchild)&& (p->rchild)) { q = p; s = p->lchild; while (s->rchild) {q = s; s = s->rchild;} p->data= s->data; if(q!=p) ; else ; delete s; } else{ if(!p->rchild) { q = p; p = p->lchild; } else if(!p->lchild) { q = p; p = p->rchild; } if(!f) ; else if (q==f->lchild) ; else ; delete q; } } int main() { BSTree T; CreateBST(T); int key; cin>>key; DeleteBST(T,key); InOrderTraverse(T); }补全这个代码 使他能够运转

完整代码如下: ```c++ #include<iostream> using namespace std; typedef struct ElemType{ int key; }ElemType; typedef struct BSTNode{ ElemType data; BSTNode *lchild,*rchild; }BSTNode,*BSTree; int flag=1; void InsertBST(BSTree &T,ElemType e ) { if(!T) { BSTree S = new BSTNode; S->data =e; S->lchild = S->rchild = NULL; T = S; } else if (e.key< T->data.key) InsertBST(T->lchild, e); else if (e.key> T->data.key) InsertBST(T->rchild, e); } void CreateBST(BSTree &T ) { int i=1,n; cin >> n; T=NULL; ElemType e; while(i<=n){ cin>>e.key; InsertBST(T, e); i++; } } void InOrderTraverse(BSTree &T) { if(T) { InOrderTraverse(T->lchild); if(flag){cout<<T->data.key;flag=0;} else cout<<" "<<T->data.key; InOrderTraverse(T->rchild); } } void DeleteBST(BSTree &T,char key) { BSTree p=T; BSTree f=NULL; BSTree q; BSTree s; while(p){ if (p->data.key == key) break; f=p; if (p->data.key> key) p=p->lchild; else p=p->rchild; } if(!p) cout<<"找不到此节点"<<endl; else if ((p->lchild)&& (p->rchild)) { q = p; s = p->lchild; while (s->rchild) { q = s; s = s->rchild; } p->data= s->data; if(q!=p) q->rchild=s->lchild; else q->lchild=s->lchild; delete s; } else{ if(!p->rchild) { q = p; p = p->lchild; } else if(!p->lchild) { q = p; p = p->rchild; } if(!f) T=p; else if (q==f->lchild) f->lchild=p; else f->rchild=p; delete q; } } int main() { BSTree T; CreateBST(T); int key; cin>>key; DeleteBST(T,key); InOrderTraverse(T); return 0; } ``` 这份代码可以创建一棵二叉搜索树,并支持删除指定节点。其中,`CreateBST` 函数用于创建二叉搜索树,`InsertBST` 函数用于向二叉搜索树中插入节点,`InOrderTraverse` 函数用于中序遍历二叉搜索树并输出节点的值,`DeleteBST` 函数用于删除指定节点。

#include<stdio.h> #include<stdlib.h> typedef struct BiTNode { int key; struct BiTNode *lchild, *rchild; } BiTNode, *BiTree; int SearchBST(BiTree T, int key, BiTree f, BiTree &p) { if (!T) { p = f; return 0; } else if (key == T->key) { p = T; return 1; } else if (key < T->key) SearchBST(T->lchild, key, T, p); else SearchBST(T->rchild, key, T, p); } int InsertBST(BiTree &T, int key) { if (!T) { T = (BiTree)malloc(sizeof(BiTNode)); T->key = key; T->lchild = (T)->rchild = NULL; } if (key == T->key) return 0; if (key > T->key) InsertBST(T->rchild, key); else InsertBST(T->lchild, key); } void InorderTraverse(BiTree T) { if (T){ InorderTraverse(T->lchild); printf("%d ", T->key); InorderTraverse(T->rchild); } } void Delete(BiTree &p) { BiTree q, s; if (!p->lchild && !p->rchild) p = NULL; else if (!p->lchild) { q = p; p = p->rchild; free(q); } else if (!p->rchild) { q = p; p = p->lchild; free(q); } else{ q = p; s = p->lchild; while (s->rchild) { q = s; s = s->rchild; } p->key = s->key; if (q != p) q->rchild = s->lchild; else q->lchild = s->lchild; free(s); } } int DeleteBST(BiTree &T, int key) { if (!T) return 0; else{ if (key == T->key) Delete(T); else if (key < T->key) DeleteBST(T->lchild, key); else DeleteBST(T->rchild, key); } } int main() { int e, n; BiTree T = NULL, f = 0, p; printf("输入长度:"); scanf("%d", &n); printf("输入元素:"); while (n--){ scanf("%d", &e); InsertBST(T, e); } printf("中序遍历:"); InorderTraverse(T); printf("\n"); while (1) { printf("输入要查找元素:"); scanf("%d", &e); if (SearchBST(T, e, f, p)) printf("找到了\n"); else printf("没找到\n"); printf("输入要插入元素:"); scanf("%d", &e); InsertBST(T, e); printf("中序遍历:"); InorderTraverse(T); printf("\n"); printf("输入要删除元素:"); scanf("%d", &e); DeleteBST(T, e); printf("中序遍历:"); InorderTraverse(T); printf("\n"); } }请帮我注视本段代码

好的,以下是本段代码的注释: ```c #include<stdio.h> #include<stdlib.h> //定义二叉搜索树的节点结构体 typedef struct BiTNode { int key; //节点值 struct BiTNode *lchild, *rchild; //左右子节点 } BiTNode, *BiTree; //在二叉搜索树T中查找值为key的节点,f为T的父节点,p为查找结果 int SearchBST(BiTree T, int key, BiTree f, BiTree &p) { if (!T) { p = f; return 0; //未找到 } else if (key == T->key) { p = T; return 1; //找到 } else if (key < T->key) SearchBST(T->lchild, key, T, p); else SearchBST(T->rchild, key, T, p); } //在二叉搜索树T中插入值为key的节点 int InsertBST(BiTree &T, int key) { if (!T) { T = (BiTree)malloc(sizeof(BiTNode)); //申请新节点 T->key = key; T->lchild = (T)->rchild = NULL; //左右子节点置为空 } if (key == T->key) return 0; //已有相同节点 if (key > T->key) InsertBST(T->rchild, key); //插入右子树 else InsertBST(T->lchild, key); //插入左子树 } //中序遍历二叉搜索树 void InorderTraverse(BiTree T) { if (T){ InorderTraverse(T->lchild); printf("%d ", T->key); InorderTraverse(T->rchild); } } //删除指定节点 void Delete(BiTree &p) { BiTree q, s; if (!p->lchild && !p->rchild) p = NULL; else if (!p->lchild) { q = p; p = p->rchild; free(q); } else if (!p->rchild) { q = p; p = p->lchild; free(q); } else { q = p; s = p->lchild; while (s->rchild) { q = s; s = s->rchild; } p->key = s->key; if (q != p) q->rchild = s->lchild; else q->lchild = s->lchild; free(s); } } //在二叉搜索树T中删除值为key的节点 int DeleteBST(BiTree &T, int key) { if (!T) return 0; //未找到 else { if (key == T->key) Delete(T); //找到并删除 else if (key < T->key) DeleteBST(T->lchild, key); //在左子树中递归查找和删除 else DeleteBST(T->rchild, key); //在右子树中递归查找和删除 } } //主函数 int main() { int e, n; BiTree T = NULL, f = 0, p; //T为二叉搜索树,f为T的父节点,p为查找结果 printf("输入长度:"); scanf("%d", &n); printf("输入元素:"); while (n--) { scanf("%d", &e); InsertBST(T, e); //插入元素建树 } printf("中序遍历:"); InorderTraverse(T); //中序遍历 printf("\n"); while (1) { printf("输入要查找元素:"); scanf("%d", &e); if (SearchBST(T, e, f, p)) printf("找到了\n"); else printf("没找到\n"); printf("输入要插入元素:"); scanf("%d", &e); InsertBST(T, e); //插入元素 printf("中序遍历:"); InorderTraverse(T); //中序遍历 printf("\n"); printf("输入要删除元素:"); scanf("%d", &e); DeleteBST(T, e); //删除元素 printf("中序遍历:"); InorderTraverse(T); //中序遍历 printf("\n"); } } ```

相关推荐

#include <iostream> using namespace std; typedef int Elemtype1; typedef struct { Elemtype1 coef; int exp; }Elemtype; typedef struct LNode { Elemtype data; LNode *next; }*Poly; void Initlist(Poly &pa); void Input(Poly &pa); void Output(Poly &pa); void Add(Poly &pa,Poly &pb); int main() { Poly po1,po2; Initlist(po1); Initlist(po2); Input(po1); Input(po2); Output(po1); Output(po2); Add(po1,po2); Output(po1); } void Initlist(Poly &pa) { pa=new LNode; pa->next=pa; } void Input(Poly &pa) { LNode *r,*s; r=pa; Elemtype1 x; int z; cout<<"input coef,exp,exp==-1 will be end.\n"; while(1)//循环 { cin>>x>>z; if(z==-1) break;//如果z=-1 s=new LNode; s->data.coef=x; s->data.exp=z;//新节点s,data系数 为x,指数为z r->next=s;//r的后继为s r=s; } r->next=pa; } void Output(Poly &pa) { LNode *p=pa->next; bool start=true; while(p!=pa) { if(!start) { if(p->data.coef>0) cout<<"+"; } if(p->data.exp==0) cout<data.coef; if(p->data.exp!=0&&!(p->data.coef==1||p->data.coef==-1)) cout<data.coef; if(p->data.exp!=0&& p->data.coef==-1) cout<<"-"; if(p->data.exp!=0) { cout<<"X"; if(p->data.exp!=1) cout<<"^"<data.exp; } start=false; p=p->next; } cout<<endl; } void Add(Poly &pa,Poly &pb) { LNode *p,*q,*r,*qd; p=pa->next; q=pb->next; r=pa; while(p!=pa&&q!=pb) { if(p->data.exp<q->data.exp) { r->next=p; r=p;p=p->next; } else if(p->data.exp>q->data.exp) { r->next=q; r=q;q=q->next; } else { p->data.coef=p->data.coef+q->data.coef; if(p->data.coef!=0) { r->next=p; r=p;p=p->next; } else { qd=p;p=p->next; delete qd; } qd=q; q=q->next; delete qd; } } if(p!=pa) r->next=p; else { while(q!=pb) { r->next=q; r=q;q=q->next; } r->next=pa; } qd=q; delete qd; }这段代码的每一行注释

最新推荐

recommend-type

2000-2021年 河北统计年鉴数据整理

该年鉴全面、系统地记录了河北省经济社会发展的历史轨迹和现状,提供了大量的统计数据和信息,是了解河北省经济社会发展情况的重要参考书籍。 河北统计年鉴涵盖了河北省各个领域的数据资料,包括经济发展、人口就业、社会事业、居民生活、环境保护等多个方面。其中,不仅有各年度河北省经济社会发展的总体情况,还有分地区、分行业的详细数据和分析报告,为各级政府、企业和学术界提供了重要的决策参考和数据支持。本数据包含原始数据、线性插值、ARIMA填补、有效值统计,说明。
recommend-type

PCHunter.zipPCHunter.zipPCHunter.zip

PCHunter.zipPCHunter.zipPCHunter.zip
recommend-type

智能运维+AIOps+传统行业落地+运维

AIOps在传统行业的落地探索主要集中在利用人工智能技术改进IT运维的效率和质量,以应对日益复杂的技术环境和日益增长的数据量。以下是几个关键领域的探索和应用实例: 1.金融业:运用AI技术预测系统故障、优化资源分配、自动识别异常模式,从而减少停机时间和提高服务质量。 2.制造业:用于预测设备故障、优化生产线效率。 3.零售业:监控销售系统、库存管理和客户交互平台,确保交易顺畅,及时发现并解决系统瓶颈,提升顾客体验。 4.医疗健康:帮助管理庞大的医疗信息系统,确保患者数据的安全性和访问速度,同时通过分析系统日志预测系统故障,保障医疗服务的连续性。 5.能源行业:能源公司利用AIOps监测智能电网、风电场和太阳能电站,优化能源分配,提高能源供应的稳定性和效率。 6.教育行业:在线教育平台和学校IT系统利用AIOps进行网络性能监控、用户行为分析和安全威胁检测,保证远程教学的流畅性和安全性。 这些探索和应用不仅提升了传统行业的运维效率,也促进了业务创新,使企业能够更好地适应数字化转型的挑战。随着AI技术的不断进步,AIOps在传统行业的应用将会更加广泛和深入。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S