用R语言能实现吗
时间: 2023-07-20 14:11:53 浏览: 199
Big Data in R.zip_Big!_R语言实现大数据
当然可以!以下是一个简单的分类回归树的R语言代码示例:
```R
class DecisionTree {
max_depth <- NULL
min_samples_split <- 2
tree <- list()
DecisionTree <- function(max_depth=NULL, min_samples_split=2) {
this <- list()
this$max_depth <- max_depth
this$min_samples_split <- min_samples_split
this$tree <- list()
class(this) <- "DecisionTree"
this
}
fit <- function(X, y, depth=0) {
n_samples <- dim(X)[1]
n_features <- dim(X)[2]
if (n_samples >= this$min_samples_split && depth <= this$max_depth) {
best_feature <- NULL
best_threshold <- NULL
best_gain <- -Inf
for (feature in 1:n_features) {
feature_values <- X[, feature]
thresholds <- unique(feature_values)
for (threshold in thresholds) {
left_indices <- which(feature_values <= threshold)
right_indices <- which(feature_values > threshold)
if (length(left_indices) > 0 && length(right_indices) > 0) {
y_left <- y[left_indices]
y_right <- y[right_indices]
gain <- information_gain(y, y_left, y_right)
if (gain > best_gain) {
best_gain <- gain
best_feature <- feature
best_threshold <- threshold
}
}
}
}
if (!is.null(best_feature) && !is.null(best_threshold)) {
left_indices <- which(X[, best_feature] <= best_threshold)
right_indices <- which(X[, best_feature] > best_threshold)
this$tree <- list(feature=best_feature,
threshold=best_threshold,
left=fit(X[left_indices, ], y[left_indices], depth+1),
right=fit(X[right_indices, ], y[right_indices], depth+1))
}
}
if (is.null(names(this$tree))) {
this$tree$value <- calculate_leaf_value(y)
}
this
}
predict <- function(X) {
apply(X, 1, traverse_tree, this$tree)
}
information_gain <- function(y, y_left, y_right) {
parent_entropy <- entropy(y)
left_entropy <- entropy(y_left)
right_entropy <- entropy(y_right)
n <- length(y)
n_l <- length(y_left)
n_r <- length(y_right)
child_entropy <- (n_l/n) * left_entropy + (n_r/n) * right_entropy
parent_entropy - child_entropy
}
calculate_leaf_value <- function(y) {
mean(y)
}
entropy <- function(y) {
counts <- table(y)
probabilities <- counts / length(y)
-sum(probabilities * log2(probabilities))
}
traverse_tree <- function(x, tree) {
if (!is.null(names(tree))) {
if (x[tree$feature] <= tree$threshold) {
traverse_tree(x, tree$left)
} else {
traverse_tree(x, tree$right)
}
} else {
tree$value
}
}
}
```
这里的分类回归树与Python代码示例相似,同样实现了通过找到最佳分割点来分裂节点,最佳分割点也是通过计算信息增益来选择的。同样可以设置最大深度和最小样本数来控制树的大小和过拟合问题。
阅读全文