APS的高级计划的遗传算法,java代码示例
时间: 2024-03-31 22:33:32 浏览: 133
遗传算法,包括例子和代码
以下是一个使用遗传算法求解TSP(旅行商问题)的Java代码示例:
```java
import java.util.Random;
public class GeneticAlgorithm {
private int populationSize;
private int[][] population;
private double[] fitness;
private int[] bestTour;
private double bestFitness;
private Random random;
private double mutationRate;
public GeneticAlgorithm(int populationSize, int[][] initialPopulation, double mutationRate) {
this.populationSize = populationSize;
this.population = initialPopulation;
this.fitness = new double[populationSize];
this.random = new Random();
this.mutationRate = mutationRate;
}
public void run(int numGenerations) {
for (int i = 0; i < numGenerations; i++) {
evaluateFitness();
selectParents();
recombine();
mutate();
}
}
public int[] getBestTour() {
return bestTour;
}
public double getBestFitness() {
return bestFitness;
}
private void evaluateFitness() {
double sumFitness = 0;
double minFitness = Double.POSITIVE_INFINITY;
int minIndex = 0;
for (int i = 0; i < populationSize; i++) {
double fitnessValue = calculateFitness(population[i]);
fitness[i] = fitnessValue;
sumFitness += fitnessValue;
if (fitnessValue < minFitness) {
minFitness = fitnessValue;
minIndex = i;
}
}
bestTour = population[minIndex];
bestFitness = minFitness;
}
private double calculateFitness(int[] tour) {
// 计算TSP问题的路径长度作为适应度值
double fitnessValue = 0;
int n = tour.length;
for (int i = 0; i < n - 1; i++) {
int city1 = tour[i];
int city2 = tour[i + 1];
fitnessValue += distance(city1, city2);
}
int city1 = tour[n - 1];
int city2 = tour[0];
fitnessValue += distance(city1, city2);
return fitnessValue;
}
private void selectParents() {
// 轮盘赌选择
double[] cumulativeFitness = new double[populationSize];
double sumFitness = 0;
for (int i = 0; i < populationSize; i++) {
sumFitness += fitness[i];
cumulativeFitness[i] = sumFitness;
}
int[] parent1 = null;
int[] parent2 = null;
for (int i = 0; i < populationSize; i++) {
double randomValue = random.nextDouble() * sumFitness;
for (int j = 0; j < populationSize; j++) {
if (randomValue <= cumulativeFitness[j]) {
if (parent1 == null) {
parent1 = population[j];
} else {
parent2 = population[j];
break;
}
}
}
if (parent2 != null) {
break;
}
}
crossover(parent1, parent2);
}
private void crossover(int[] parent1, int[] parent2) {
// 顺序交叉算子
int n = parent1.length;
int[] child = new int[n];
int startIndex = random.nextInt(n);
int endIndex = random.nextInt(n);
if (startIndex > endIndex) {
int temp = startIndex;
startIndex = endIndex;
endIndex = temp;
}
for (int i = 0; i < n; i++) {
child[i] = -1;
}
for (int i = startIndex; i <= endIndex; i++) {
child[i] = parent1[i];
}
int index = endIndex + 1;
for (int i = 0; i < n; i++) {
if (index == n) {
index = 0;
}
int city = parent2[i];
if (!contains(child, city)) {
child[index] = city;
index++;
}
}
population[random.nextInt(populationSize)] = child;
}
private void mutate() {
// 交换变异算子
for (int i = 0; i < populationSize; i++) {
if (random.nextDouble() < mutationRate) {
int n = population[i].length;
int index1 = random.nextInt(n);
int index2 = random.nextInt(n);
int temp = population[i][index1];
population[i][index1] = population[i][index2];
population[i][index2] = temp;
}
}
}
private void recombine() {
// 保留最优个体,其他个体按概率进行选择复制
int[][] newPopulation = new int[populationSize][];
double sumFitness = 0;
for (int i = 0; i < populationSize; i++) {
sumFitness += fitness[i];
}
double[] probabilities = new double[populationSize];
for (int i = 0; i < populationSize; i++) {
probabilities[i] = fitness[i] / sumFitness;
}
int index = 0;
for (int i = 0; i < populationSize; i++) {
if (random.nextDouble() < probabilities[i]) {
newPopulation[index] = population[i];
index++;
}
if (index == populationSize - 1) {
break;
}
}
newPopulation[populationSize - 1] = bestTour;
population = newPopulation;
}
private boolean contains(int[] array, int value) {
for (int i = 0; i < array.length; i++) {
if (array[i] == value) {
return true;
}
}
return false;
}
private double distance(int city1, int city2) {
// TSP问题的距离函数
// ...
}
}
```
在这个例子中,我们使用顺序交叉算子和交换变异算子进行遗传算法的操作。其中,evaluateFitness()函数计算每个个体的适应度值,selectParents()函数使用轮盘赌选择两个父代个体,crossover()函数对两个父代个体进行交叉操作,mutate()函数对所有个体进行变异操作,recombine()函数选择一部分个体进行复制,保留最优个体。最终我们可以得到最优的路径和路径长度。
阅读全文