sil = [] kl = [] kmax = 10 for k in range(2, kmax + 1): kmeans2 = KMeans(n_clusters=k).fit(pred_images) labels = kmeans2.labels_ SC = sil.append(silhouette_score(pred_images, labels, metric='euclidean')) kl.append(k) #np.savetxt("D:/wjd/22.txt",sil , fmt='%f', delimiter=',') sil = [] kl = [] kmax = 10 for k in range(2, kmax + 1): kmeans2 = KMeans(n_clusters=k).fit(pred_images) labels = kmeans2.labels_ SC = sil.append(silhouette_score(pred_images, labels, metric='euclidean')) kl.append(k) np.savetxt("D:/wjd/22.txt",sil ,kl , fmt='%f', delimiter=',')

时间: 2024-04-08 14:29:53 浏览: 128
在你提供的代码中,你使用了K均值聚类算法来计算不同聚类数量下的轮廓系数(silhouette score)和K值。然后你尝试将轮廓系数和K值保存到一个文件中。 不过,在代码中有一些错误,需要进行修正。以下是修正后的代码: ```python import numpy as np from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score sil = [] kl = [] kmax = 10 pred_images = # 替换为你的图像数据 for k in range(2, kmax + 1): kmeans = KMeans(n_clusters=k).fit(pred_images) labels = kmeans.labels_ SC = silhouette_score(pred_images, labels, metric='euclidean') sil.append(SC) kl.append(k) np.savetxt("D:/wjd/22.txt", np.column_stack((kl, sil)), fmt='%f', delimiter=',') ``` 在修正后的代码中,我们首先导入了所需的库。然后,我们定义了空的sil和kl列表以存储计算得到的轮廓系数和K值。 接下来,我们使用循环来迭代不同的K值,对输入数据进行K均值聚类,并计算轮廓系数。轮廓系数通过silhouette_score函数计算得到,并将其添加到sil列表中,同时将当前的K值添加到kl列表中。 最后,我们使用np.savetxt函数将kl和sil转换为列矩阵,并以逗号作为分隔符保存到指定路径下的文本文件中(在这里是D:/wjd/22.txt)。 请确保在运行代码前替换pred_images为你的实际图像数据。
阅读全文

相关推荐

function [pesq_mos, pesq_seg] = pesq(ref, deg, fs) % Check inputs if nargin < 3 fs = 16000; end if nargin < 2 error('Not enough input arguments'); end if length(ref) ~= length(deg) error('Input signals must be of equal length'); end % Load filter coefficients load('pesq_filter.mat'); % High-pass filter deg_hp = filter(b_hp, a_hp, deg); % Remove silence [r_beg, r_end] = find_voiced(ref, fs); [d_beg, d_end] = find_voiced(deg_hp, fs); r_sig = ref(r_beg:r_end); d_sig = deg_hp(d_beg:d_end); % Find maximum length sig_len = min(length(r_sig), length(d_sig)); % Filter signals r_sig = filter(b_lpf, a_lpf, r_sig(1:sig_len)); d_sig = filter(b_lpf, a_lpf, d_sig(1:sig_len)); % Resample signals r_sig = resample(r_sig, 8000, fs); d_sig = resample(d_sig, 8000, fs); % Calculate PESQ [pesq_mos, pesq_seg] = pesq_mex(r_sig, d_sig); end function [beg, endd] = find_voiced(sig, fs) % Set parameters win_len = 240; win_shift = 80; sil_thresh = 30; min_voiced = 0.1; % Calculate energy sig_pow = sig.^2; sig_pow_filt = filter(ones(1, win_len)/win_len, 1, sig_pow); % Normalize sig_pow_filt = sig_pow_filt/max(sig_pow_filt); % Find voiced segments beg = []; endd = []; num_voiced = 0; for n = 1:win_shift:length(sig)-win_len if sig_pow_filt(n+win_len/2) > min_voiced && ... mean(sig_pow_filt(n:n+win_len-1)) > sil_thresh if isempty(beg) beg = n; end else if ~isempty(beg) endd = [endd n-1]; num_voiced = num_voiced + 1; beg = []; end end end if ~isempty(beg) endd = [endd length(sig)]; num_voiced = num_voiced + 1; end % Remove segments that are too short min_len = fs*0.05; len_voiced = endd-beg+1; too_short = len_voiced < min_len; beg(too_short) = []; endd(too_short) = []; end中的pesq_mex.mexa64

最新推荐

recommend-type

SIL9134 DATASHEET

为了降低系统成本,SiI9134集成了一个额外的I2C主端口,用于控制DDC总线,简化了系统集成。 SiI9134在支持先进的HDMI 1.3视频特性的同时,也对传统DVD音频进行了优化,能实现7.1环绕声的192kHz播放,以及SACD音频...
recommend-type

基于FPGA的实时MIPI CSI-2图像采集与处理系统

【基于FPGA的实时MIPI CSI-2图像采集与处理系统】是一种专为移动嵌入式领域设计的高效解决方案,它利用Lattice FPGA芯片实现高速图像数据采集和处理。MIPI CSI-2接口是移动设备中广泛采用的高清图像传输标准,由ARM...
recommend-type

ADAS芯片tda4vm1.1更新版_中文版.pdf

- **硬件完整性**:MCU域符合ASIL-D/SIL-3,主域符合ASIL-B/SIL-2。 - **安全启动**:确保安全运行时支持。 - **密钥管理**:支持RSA-4K或ECC-512的客户可编程根密钥。 - **硬件安全模块**:内置加密硬件加速器,如...
recommend-type

tda4vm中文版-适用于 ADAS 和自动驾驶汽车的

TDA4VM支持超高清视频处理,能够处理1个3840 × 2160p 60fps或2个3840 × 2160p 30fps的视频流,确保高质量的视觉体验。 综上所述,TDA4VM Jacinto处理器器件是ADAS和自动驾驶汽车的理想选择,集成了高性能处理核心...
recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。