OpenCV+HOG+SVM+行人检测
时间: 2023-09-15 09:24:09 浏览: 137
OPENCV行人检测HOG+SVM检测视频中是否有人.zip
OpenCV HOG SVM 行人检测是一种基于机器学习算法的行人检测方法。该方法使用了HOG(方向梯度直方图)特征来描述行人的外貌特征,然后通过SVM(支持向量机)分类器对图像中的目标进行分类。
具体步骤如下:
1. 提取HOG特征:将图像分成若干个小的图块,对每个图块计算其HOG特征,即计算每个像素的梯度方向和大小,然后将其转化为梯度直方图。
2. 训练SVM分类器:使用已标注的行人图像和非行人图像对SVM分类器进行训练,使其能够对行人和非行人进行区分。
3. 滑动窗口检测:在待检测的图像上,使用一个滑动窗口对图像进行扫描,对每个窗口提取HOG特征,然后使用训练好的SVM分类器对该窗口进行分类,判断其是否为行人。
4. 非极大值抑制:为了避免重复检测,对检测结果进行非极大值抑制,即对重叠的检测框进行筛选,只保留最有可能包含行人的框。
OpenCV HOG SVM 行人检测具有较高的准确率和较快的检测速度,在实际应用中得到了广泛应用。
阅读全文