def getBreathingCurve(vxpPath,scanTimes,isplot=0): #读取vxp文档的信息 with open(vxpPath, 'rb') as f: num = 0 amplitudes=[] phases=[] timestamps=[] ttlins=[] marks=[] for line in f: num += 1 if num>=11: line = line.strip() line = str(line, encoding = "utf8") #print(line) line = line.split(',') amplitudes.append(float(line[0])) phases.append(line[1]) time = line[2] if len(time)<4: ms = int(time) s = 0 else: ms = int(time[len(time)-3:]) s = int(time[0:len(time)-3]) timestamps.append(s+ms/1000) # unit [s] ttlins.append(int(line[4])) marks.append(line[5]) amplitudes = np.array(amplitudes) timestamps = np.array(timestamps) ttlins = np.array(ttlins) marks = np.array(marks) indexP = np.where( marks=='P')[0] indexZ = np.where( marks=='Z')[0] if len(indexP)>len(indexZ): indexP=indexP[0:len(indexZ)] else: indexZ=indexZ[0:len(indexP)] #print(amplitudes[indexP].tolist())
时间: 2024-02-15 19:27:42 浏览: 156
这段代码是Python语言编写的,定义了一个名为getBreathingCurve的函数,参数包括vxpPath:vxp文档的路径,scanTimes:扫描次数,isplot:是否画图,默认为0,即不绘制图像。该函数的主要功能是读取vxp文档中的信息,包括呼吸曲线的振幅、相位、时间戳、TTL信号和标记等,并将这些信息存储在相应的列表中。最后,该函数会根据标记中的"P"和"Z"找到呼吸曲线的起始和终止点,返回呼吸曲线的振幅信息。
相关问题
详细解释一下这段代码GTV_indexes = [] GTVs_sum = np.zeros((512,512)) # Find the cuts containning GTV contours minXY = 600 maxXY = -1 for time in times: path = folder+patient+'\\'+str(int(time)) # Find the filenames starting with CT minXY1,maxXY1,GTV_index = findContours(path,isPlot=False) GTV_indexes=np.append(GTV_indexes,GTV_index) if minXY>minXY1: minXY = minXY1 elif maxXY<maxXY1: maxXY = maxXY1 print('minXY={}'.format(minXY),'maxXY={}'.format(maxXY)) GTV_indexes = np.array(GTV_indexes) GTV_indexes = np.unique(GTV_indexes).astype(int) print('Cuts including GTVs: {}'.format(GTV_indexes)) writeToFile(GTV_indexes,folder+patient+'\\GTV_indexs.txt') #将DICOM文件的拍摄时间与呼吸曲线对应 #CT scanning time # 由vxp文件获取开始扫描的时刻 vxpPath = folder+patient+'\\0006863819_20200730_090003.vxp' injectTime = getInjectionTime(vxpPath) print('Initial injection time of CT from vxp file:{}'.format(injectTime)) # 得到GTV cut的扫描时刻 scanTimes = np.ones((len(times),len(cuts))) print('scan time of each phase CT') for i,time in enumerate(times,start=0): for j,cut in enumerate(cuts,start=0): filename = folder+patient+'\\'+str(int(time))+'\\CT.{}'.format(patient)+'.Image {}.dcm'.format(int(cut)) scanTime = getScanTime(filename) scanTimes[i,j] = scanTime scanTimes = scanTimes-scanTimes.min()+injectTime # 画出呼吸曲线,并得到相应的呼吸幅度 amplitudes = getBreathingCurve(vxpPath,scanTimes,isplot=1) writeToFile(scanTimes,folder+patient+'\\scanTimes.txt') writeToFile(amplitudes,folder+patient+'\\amplitudes.txt')
这段代码的作用是根据患者的CT扫描图像数据,找到包含肿瘤的切片,并且将这些切片的扫描时间与呼吸曲线对应起来。下面对代码进行逐行解释:
1. `GTV_indexes = []`: 初始化一个空列表,用于存储包含GTV轮廓的切片索引。
2. `GTVs_sum = np.zeros((512,512))`: 初始化一个全零矩阵,用于后面将包含GTV轮廓的切片叠加起来,得到一个包含所有GTV轮廓的二维矩阵。
3. `minXY = 600, maxXY = -1`: 初始化minXY和maxXY,用于后面记录包含GTV轮廓的切片的最小和最大索引。
4. `for time in times:`: 对每个时间点进行循环。
5. `path = folder+patient+'\\'+str(int(time))`: 构造DICOM文件夹的路径。
6. `minXY1, maxXY1, GTV_index = findContours(path, isPlot=False)`: 调用findContours函数,返回包含GTV轮廓的切片的最小和最大索引,以及切片索引。
7. `GTV_indexes=np.append(GTV_indexes,GTV_index)`: 将切片索引添加到GTV_indexes列表中。
8. `if minXY>minXY1: minXY = minXY1 elif maxXY<maxXY1: maxXY = maxXY1`: 更新最小和最大索引。
9. `GTV_indexes = np.array(GTV_indexes)`: 将GTV_indexes转换为numpy数组。
10. `GTV_indexes = np.unique(GTV_indexes).astype(int)`: 去除重复的切片索引,并将其转换为整数类型。
11. `writeToFile(GTV_indexes,folder+patient+'\\GTV_indexs.txt')`: 将包含GTV轮廓的切片索引写入文件。
12. `vxpPath = folder+patient+'\\0006863819_20200730_090003.vxp'`: 构造呼吸曲线文件的路径。
13. `injectTime = getInjectionTime(vxpPath)`: 调用getInjectionTime函数,获取CT扫描的开始时间。
14. `scanTimes = np.ones((len(times),len(cuts)))`: 初始化一个全1矩阵,用于后面存储每个切片的扫描时间。
15. `for i,time in enumerate(times,start=0): for j,cut in enumerate(cuts,start=0):`: 对每个时间点和切片进行循环。
16. `filename = folder+patient+'\\'+str(int(time))+'\\CT.{}'.format(patient)+'.Image {}.dcm'.format(int(cut))`: 构造DICOM文件的路径。
17. `scanTime = getScanTime(filename)`: 调用getScanTime函数,获取当前切片的扫描时间。
18. `scanTimes[i,j] = scanTime`: 将扫描时间存储到scanTimes矩阵中。
19. `scanTimes = scanTimes-scanTimes.min()+injectTime`: 将所有扫描时间减去最小扫描时间,再加上CT扫描的开始时间,得到每个切片的具体扫描时间。
20. `amplitudes = getBreathingCurve(vxpPath,scanTimes,isplot=1)`: 调用getBreathingCurve函数,画出呼吸曲线,并返回相应的呼吸幅度。
21. `writeToFile(scanTimes,folder+patient+'\\scanTimes.txt')`: 将每个切片的扫描时间写入文件。
22. `writeToFile(amplitudes,folder+patient+'\\amplitudes.txt')`: 将呼吸幅度写入文件。
minXY = 600 maxXY = -1 if isPlot==True: plt.figure(figsize=(20,3)) for k in range(0,numberOfContours): rfContent = contours[labelID].ContourSequence[k] dcmUID = rfContent.ContourImageSequence[0].ReferencedSOPInstanceUID cuts.append(dcmSOPs.index(dcmUID)) numberOfPoints = rfContent.NumberOfContourPoints conData = np.zeros((numberOfPoints,3)) pointData = np.zeros((numberOfPoints,3))
这段代码主要是用来读取轮廓数据并计算出其中的切片(cuts)。具体来说,它通过循环遍历每个轮廓,然后获取该轮廓所在的切片(dcmUID)并将其添加到cuts列表中。接下来,代码中读取每个轮廓的顶点数据,其中包括顶点的坐标信息和点的数量。最后,将顶点数据存储在conData和pointData数组中以备后续使用。如果需要在图像上绘制轮廓,则还会计算最小和最大的XY坐标,并将其用于设置绘图的尺寸。
阅读全文
相关推荐














