解释:def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the Levenberg-Marquardt algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. jacobian :function function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None # y的最小值 grad_val = None # 梯度的最后一次下降的值 x_log = [] # x的迭代值的数组,n*9,9个参数 y_log = [] # y的迭代值的数组,一维 grad_log = [] # 梯度下降的迭代值的数组 x0 = asarray(x0).flatten() if x0.ndim == 0: x0.shape = (1,) # iterations = len(x0) * 200 k = 1 xk = x0 updateJ = 1 lamda = 0.01 old_fval = fun(x0) gfk = grad(x0) gnorm = np.amax(np.abs(gfk)) J = [None] H = [None] while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log
时间: 2024-02-10 14:10:01 浏览: 103
这段代码实现了使用Levenberg-Marquardt算法最小化一个或多个变量的标量函数。其中fun参数是目标函数,grad参数是目标函数的梯度函数,jacobian参数是目标函数的雅可比矩阵函数,x0参数是参数的初始值,iterations参数是算法的最大迭代次数,tol参数是算法的容差。该函数返回最小化目标函数的参数值xk,目标函数在xk处的值fval,目标函数在xk处的梯度grad_val,迭代过程中x的值的数组x_log,迭代过程中y的值的数组y_log,以及梯度下降迭代值的数组grad_log。算法的核心是通过计算目标函数的梯度和雅可比矩阵,使用Levenberg-Marquardt算法不断迭代优化参数值,直到达到指定的容差或最大迭代次数为止。
相关问题
解释:算法函数3-2:LM 1: def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): 2: while (gnorm > tol) and (k < iterations): 3: if updateJ == 1: 4: x_log = np.append(x_log, xk.T) 5: yk = fun(xk) 6: y_log = np.append(y_log, yk) 7: H_lm = H + (lamda * np.eye(9)) 8: gfk = grad(xk) 9: pk = - np.linalg.inv(H_lm).dot(gfk) 10: pk = pk.A.reshape(1, -1)[0] 11: xk = xk + pk 12: fval = fun(xk) 13: if fval < old_fval: 14: lamda = lamda / 10 15: old_fval = fval
这是一个实现 Levenberg-Marquardt 算法的函数。Levenberg-Marquardt 算法是一种非线性最小二乘优化算法,用于解决非线性参数估计问题。该算法的基本思想是将高斯-牛顿算法和最小二乘问题的正则化方法相结合,使得算法能够在保证数值稳定性的同时,更好地逼近最优解。在这个函数中,输入参数 fun 是目标函数,grad 是目标函数的梯度,jacobian 是雅可比矩阵,x0 是起始点,iterations 是最大迭代次数,tol 是收敛精度。函数的主要步骤是计算当前点的梯度和海森矩阵,然后对海森矩阵进行调整,得到调整后的海森矩阵,并求出搜索方向,更新当前点,直到满足收敛条件或达到最大迭代次数为止。其中,lamda 是控制参数,控制算法在高斯-牛顿算法和最小二乘问题正则化方法之间的权衡。
将这段代码转换为伪代码:算法函数3-2:LM 1: def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): 2: while (gnorm > tol) and (k < iterations): 3: if updateJ == 1: 4: x_log = np.append(x_log, xk.T) 5: yk = fun(xk) 6: y_log = np.append(y_log, yk) 7: H_lm = H + (lamda * np.eye(9)) 8: gfk = grad(xk) 9: pk = - np.linalg.inv(H_lm).dot(gfk) 10: pk = pk.A.reshape(1, -1)[0] 11: xk = xk + pk 12: fval = fun(xk) 13: if fval < old_fval: 14: lamda = lamda / 10 15: old_fval = fval
算法函数3-2:LM
输入:目标函数 fun,目标函数的梯度 grad,雅可比矩阵 jacobian,起始点 x0,最大迭代次数 iterations,收敛精度 tol
输出:最优解 xk
1. k = 0, lamda = 0.01, H = jacobian(x0),old_fval = fun(x0)
2. while (gnorm > tol) and (k < iterations) do
3. if updateJ == 1 then
4. x_log = append(x_log, xk.T)
5. yk = fun(xk)
6. y_log = append(y_log, yk)
7. end if
8. H_lm = H + (lamda * eye(9))
9. gfk = grad(xk)
10. pk = - inv(H_lm) · gfk
11. pk = pk.A.reshape(1, -1)[0]
12. xk = xk + pk
13. fval = fun(xk)
14. if fval < old_fval then
15. lamda = lamda / 10
16. old_fval = fval
17. else
18. lamda = lamda * 10
19. end if
20. H = jacobian(xk)
21. k = k + 1
22. end while
23. return xk
阅读全文