使用python写一个说话人识别的代码
时间: 2024-05-12 11:13:18 浏览: 149
说话人识别和确认系统,采用matlab进行编写,能够进行说话人的识别和确认,研究声纹识别很好的参考代码.zip
以下是一个基本的说话人识别代码,使用Python和Librosa库来提取声音特征和分类:
```python
import librosa
import numpy as np
import os
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
# 获取音频文件的MFCC特征
def extract_features(file_name):
try:
audio_data, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
mfccs = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=20)
mfccs_scaled = np.mean(mfccs.T, axis=0)
except Exception as e:
print("Error encountered while parsing file: ", file_name)
return None
return mfccs_scaled
# 加载数据集和标签,返回训练集和测试集
def load_data(test_size=0.2):
x, y = [], []
for file in os.listdir("audio_files"):
if file.endswith(".wav"):
file_path = os.path.join("audio_files", file)
feature = extract_features(file_path)
if feature is not None:
x.append(feature)
y.append(file[0:2])
le = preprocessing.LabelEncoder()
y = le.fit_transform(y)
return train_test_split(np.array(x), y, test_size=test_size, random_state=42)
# 训练MLP分类器
def train_model(x_train, y_train):
clf = MLPClassifier(hidden_layer_sizes=(500,), max_iter=1000, alpha=0.0001, solver='adam', verbose=10, random_state=21,tol=0.000000001)
clf.fit(x_train, y_train)
return clf
# 测试分类器
def test_model(clf, x_test, y_test):
score = clf.score(x_test, y_test)
print("Accuracy:", score)
# 加载数据集
x_train, x_test, y_train, y_test = load_data()
# 训练模型
clf = train_model(x_train, y_train)
# 测试模型
test_model(clf, x_test, y_test)
```
这个代码需要将所有的音频文件都放在同一个文件夹(“audio_files”)中,并以说话人的名字(例如,“Alice.wav”)命名。最后,这个代码会输出分类器在测试集上的准确率。
阅读全文