那上面那个程序怎么改成输出x、y、宽和高、置信度、标签
时间: 2023-12-18 18:03:44 浏览: 63
可以按照以下方式修改代码:
```python
import cv2
import numpy as np
# 加载模型和标签
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 加载图片并进行预处理
img = cv2.imread("example.jpg")
height, width, _ = img.shape
blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), swapRB=True, crop=False)
# 将预处理后的图片输入到模型中,并获取输出结果
net.setInput(blob)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0]-1] for i in net.getUnconnectedOutLayers()]
outs = net.forward(output_layers)
# 处理输出结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5: # 设置置信度阈值
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# 计算边框的左上角坐标
x = int(center_x - w/2)
y = int(center_y - h/2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 非极大值抑制(NMS)
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 输出结果
for i in indices:
i = i[0]
x, y, w, h = boxes[i]
label = classes[class_ids[i]]
confidence = confidences[i]
print("x: {}, y: {}, width: {}, height: {}, confidence: {}, label: {}".format(x, y, w, h, confidence, label))
```
这样就可以输出每个物体检测框的左上角坐标 x、y,宽和高,置信度以及标签。如果需要输出多张图片的结果,可以将代码封装成一个函数,并在调用时传入图片路径。
阅读全文