通过train_cats_dir、train_dogs_dir、validation_cats_dir、validation_dogs_dir、test_cats_dir和test_dogs_dir来指定猫和狗图片所在的目录。建立KNN分类模型,利用交叉验证选择最佳的K值,并评估模型准确率
时间: 2023-08-10 22:08:11 浏览: 90
好的,你的问题是关于KNN分类模型的。我可以帮你回答。
首先,你需要导入必要的库和模块:
```python
import numpy as np
import cv2
import os
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
```
接下来,你需要定义一些变量来存储图片的路径和标签:
```python
train_cats_dir = "path/to/train/cats"
train_dogs_dir = "path/to/train/dogs"
validation_cats_dir = "path/to/validation/cats"
validation_dogs_dir = "path/to/validation/dogs"
test_cats_dir = "path/to/test/cats"
test_dogs_dir = "path/to/test/dogs"
X_train = []
y_train = []
X_validation = []
y_validation = []
X_test = []
y_test = []
```
然后,你需要编写一个函数来读取图片并将其转换为向量,这里使用OpenCV库:
```python
def read_image(file_path):
img = cv2.imread(file_path)
img = cv2.resize(img, (32, 32), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.flatten()
return img
```
接下来,你需要遍历图片目录并读取图片,并将其添加到训练集、验证集和测试集中:
```python
for file_name in os.listdir(train_cats_dir):
file_path = os.path.join(train_cats_dir, file_name)
X_train.append(read_image(file_path))
y_train.append(0)
for file_name in os.listdir(train_dogs_dir):
file_path = os.path.join(train_dogs_dir, file_name)
X_train.append(read_image(file_path))
y_train.append(1)
for file_name in os.listdir(validation_cats_dir):
file_path = os.path.join(validation_cats_dir, file_name)
X_validation.append(read_image(file_path))
y_validation.append(0)
for file_name in os.listdir(validation_dogs_dir):
file_path = os.path.join(validation_dogs_dir, file_name)
X_validation.append(read_image(file_path))
y_validation.append(1)
for file_name in os.listdir(test_cats_dir):
file_path = os.path.join(test_cats_dir, file_name)
X_test.append(read_image(file_path))
y_test.append(0)
for file_name in os.listdir(test_dogs_dir):
file_path = os.path.join(test_dogs_dir, file_name)
X_test.append(read_image(file_path))
y_test.append(1)
```
然后,你需要将训练集和验证集合并,并训练KNN分类器,通过交叉验证来选择最佳的K值:
```python
X_train_validation = X_train + X_validation
y_train_validation = y_train + y_validation
k_scores = []
k_range = range(1, 31)
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
scores = cross_val_score(knn, X_train_validation, y_train_validation, cv=10, scoring='accuracy')
k_scores.append(scores.mean())
best_k = k_range[np.argmax(k_scores)]
```
最后,你可以使用测试集评估模型的准确率:
```python
knn = KNeighborsClassifier(n_neighbors=best_k)
knn.fit(X_train_validation, y_train_validation)
accuracy = knn.score(X_test, y_test)
print(f"最佳的K值为:{best_k}")
print(f"测试集准确率为:{accuracy}")
```
这样就完成了KNN分类模型的建立、交叉验证和评估。
阅读全文
相关推荐
















