利用指向电话入组指针求二维数组各行元素之和

时间: 2023-09-24 17:13:13 浏览: 48
可以使用两层循环,第一层循环遍历数组每一行,第二层循环遍历该行每个元素,累加求和即可。具体代码实现如下: ```c // 计算所有行的元素和 void calcSum(int** arr, int row, int col, int* result) { // 遍历每一行 for (int i = 0; i < row; i++) { int sum = 0; // 遍历该行每个元素 for (int j = 0; j < col; j++) { sum += arr[i][j]; } result[i] = sum; } } ``` 其中arr是一个指向二维数组的指针,row表示数组的行数,col表示数组的列数,result是一个记录每行元素之和的一维数组。调用该函数后,result数组中就会存储各行元素之和。
相关问题

利用指向数组的指针求二维数组各行元素之和

好的,这是一个比较基础的问题。我们可以先定义一个二维数组: ```c int arr[3][4] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} }; ``` 然后,我们定义一个指向数组的指针 `p`,让它指向二维数组的第一行: ```c int *p = arr[0]; ``` 我们还需要定义一个一维数组 `sum`,用来存储每行的元素和。初始值为0。 ```c int sum[3] = {0}; ``` 接下来,我们需要遍历二维数组的每一行,计算它们的元素和。我们可以使用循环来实现: ```c for (int i = 0; i < 3; i++) { for (int j = 0; j < 4; j++) { sum[i] += *(p + i*4 + j); } } ``` 在第一次循环中,`i=0`,`j=0`,`sum[0]`的初始值为0,我们可以通过指针 `p` 访问到二维数组的第一个元素 `arr[0][0]`,然后通过指针加法来访问每个元素。对于每一行的元素和计算完后,我们就可以访问下一行的元素,以此类推,直到遍历完二维数组的所有行。 最后,我们可以输出每行的元素和: ```c for (int i = 0; i < 3; i++) { printf("sum of row %d is %d\n", i+1, sum[i]); } ``` 这样,就完成了利用指向数组的指针求二维数组各行元素之和的操作。

用指向数组的指针求二维数组各行元素之和

可以使用以下代码来实现用指向数组的指针求二维数组各行元素之和: ```c #include <stdio.h> #define ROWS 3 #define COLS 4 void row_sum(int arr[][COLS], int rows); int main(void) { int array[ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} }; row_sum(array, ROWS); return 0; } void row_sum(int arr[][COLS], int rows) { int sum; for(int i = 0; i < rows; i++) { sum = 0; for(int j = 0; j < COLS; j++) { sum += *(*(arr + i) + j); } printf("Row %d sum: %d\n", i+1, sum); } } ``` 解释: 用指向数组的指针 `*(*(arr + i) + j)` 来访问二维数组中的元素,外层循环为行数,内层循环为列数,计算每一行的元素之和并输出。

相关推荐

最新推荐

recommend-type

指向指针的指针 word

本例程序中,pa是一个指针数组,三个元素分别指向二维数组a的各行。然后用循环语句输出指定的数组元素。其中*a[i]表示i行0列元素值;*(*(a+i)+i)表示i行i列的元素值;*pa[i]表示i行0列元素值;由于p与a[0]相同,故p...
recommend-type

druid-1.0.11.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

xmpcore-5.1.2.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

node-v4.6.2-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v6.2.0-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。