将语音信号的MFCC特征及对应文本标签都处理好后,怎样通过cnn来训练的python代码
时间: 2023-11-22 11:55:52 浏览: 77
下面是一个简单的基于CNN的语音识别模型的代码示例,可以用于处理MFCC特征和对应文本标签:
```python
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
# 读取MFCC特征和对应标签
train_features = np.load('train_features.npy')
train_labels = np.load('train_labels.npy')
test_features = np.load('test_features.npy')
test_labels = np.load('test_labels.npy')
# 将MFCC特征转换为图像形式
train_features = np.reshape(train_features, (train_features.shape[0], train_features.shape[1], train_features.shape[2], 1))
test_features = np.reshape(test_features, (test_features.shape[0], test_features.shape[1], test_features.shape[2], 1))
# 构建CNN模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(train_features.shape[1], train_features.shape[2], 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(test_features, test_labels))
# 评估模型
score = model.evaluate(test_features, test_labels, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
该代码将MFCC特征转换为图像形式,并使用CNN模型进行训练和评估。您需要将`train_features.npy`和`train_labels.npy`替换为您自己的训练数据特征和标签,`test_features.npy`和`test_labels.npy`替换为您自己的测试数据特征和标签。还需要根据您的数据进行适当的调整,如设置批量大小、迭代次数、卷积层和全连接层的数量等。
阅读全文