features = [] for poscar in poscars: # TODO: 实现将POSCAR结构转换为特征向量的代码 def poscar_to_feature_vector(poscar_file): # 读取原子坐标和原子数目 atoms = read(poscar_file) coords = atoms.positions num_atoms = len(atoms) # 定义特征向量长度 feature_length = num_atoms * 3 feature_vector = np.zeros(feature_length) # 将每个原子的坐标添加到特征向量中 for i in range(num_atoms): feature_vector[i*3] = coords[i][0] feature_vector[i*3+1] = coords[i][1] feature_vector[i*3+2] = coords[i][2] return feature_vector features.append(feature_vector)
时间: 2024-03-17 17:47:35 浏览: 100
这段代码中,poscar_to_feature_vector
函数定义在 for
循环内部,导致无法在循环外部使用该函数。你需要将 poscar_to_feature_vector
函数定义移动到循环外部。另外,你需要将 feature_vector
添加到 features
列表中的操作放在 poscar_to_feature_vector
函数内部,否则 features
列表将会只包含最后一个 feature_vector
。修改后的代码如下:
features = []
# 定义 poscar_to_feature_vector 函数
def poscar_to_feature_vector(poscar_file):
# 读取原子坐标和原子数目
atoms = read(poscar_file)
coords = atoms.positions
num_atoms = len(atoms)
# 定义特征向量长度
feature_length = num_atoms * 3
feature_vector = np.zeros(feature_length)
# 将每个原子的坐标添加到特征向量中
for i in range(num_atoms):
feature_vector[i*3] = coords[i][0]
feature_vector[i*3+1] = coords[i][1]
feature_vector[i*3+2] = coords[i][2]
# 将 feature_vector 添加到 features 列表中
features.append(feature_vector)
# 遍历 poscars 列表,将每个 POSCAR 文件转换为特征向量并添加到 features 列表中
for poscar in poscars:
poscar_to_feature_vector(poscar)
希望这能帮到你!
相关推荐


















