double sharpnessDetect(const cv::Mat &srcImg) { int gaussianSize = 3; cv::Mat img; if (srcImg.channels() != 1) cv::cvtColor(srcImg, img, COLOR_BGR2GRAY); else img = srcImg; cv::Mat out; cv::GaussianBlur(img, out, cv::Size(gaussianSize, gaussianSize), 0, 0); unsigned long d_Fver = 0, d_Fhor = 0, d_Bver = 0, d_Bhor = 0; unsigned long vver = 0, vhor = 0; unsigned long s_Fver = 0, s_Fhor = 0, s_Vver = 0, s_Vhor = 0; double b_Fver = 0.0, b_Fhor = 0.0; double blur_F = 0.0; for (int r = 0; r < img.rows; r++) { for (int c = 0; c < img.cols; c++) { if (r != 0) d_Fver = abs(img.at<uchar>(r, c) - img.at<uchar>(r - 1, c)) if (c != 0) d_Fhor = abs(img.at<uchar>(r, c) - img.at<uchar>(r, c - 1)) if (r != 0) d_Bver = abs(out.at<uchar>(r, c) - out.at<uchar>(r - 1, c)) if (c != 0) d_Bhor = abs(out.at<uchar>(r, c) - out.at<uchar>(r, c - 1)) vver = (d_Fver - d_Bver > 0) ? (d_Fver - d_Bver) : 0 vhor = (d_Fhor - d_Bhor > 0) ? (d_Fhor - d_Bhor) : 0 s_Fver += d_Fver; s_Fhor += d_Fhor; s_Vver += vver; s_Vhor += vhor; } } b_Fver = (s_Fver - s_Vver) / ((double)s_Fver + 1); b_Fhor = (s_Fhor - s_Vhor) / ((double)s_Fhor + 1); blur_F = (b_Fver > b_Fhor) ? b_Fver : b_Fhor; return 1 - blur_F; }
时间: 2024-04-26 19:26:51 浏览: 149
这段代码是一个双边缘检测函数,用于计算图像的清晰度。该函数首先将输入图像转换为灰度图像(如果输入图像不是单通道的),然后使用高斯模糊对灰度图像进行模糊处理。接下来,该函数计算前景和背景的差异,并使用该差异计算垂直和水平方向的前景梯度和背景梯度。然后,该函数计算每个像素的前景梯度和背景梯度之差,并将其用于计算垂直和水平方向的前景梯度和背景梯度的总和。最后,该函数使用前景梯度和背景梯度的总和计算清晰度值,并将其返回。
需要注意的是,在代码中有一些缺少分号的错误,需要在相应的地方添加分号。另外,该函数的实现可能存在一些性能问题,特别是在处理大型图像时。可以考虑使用多线程或GPU加速等技术来提高性能。
相关问题
function [img_hist_trans, img_hist_sep, img_hist_hsv, img_hist_yuv, img_hist_ycbcr] = histeq_all(img_in, flag) %histogram equalization for low light image enhancement %img_in is the raw image %flag is set to 1 for displaying the outputs %output vector contains the results of five methods of histogram equalization img_test=im2double(img_in); img_hist_trans=histeq(img_test); %same as hist_trans img_hist_sep=hist_sep(img_test); img_hist_hsv=histeq_hsv(img_test); img_hist_yuv=histeq_yuv(img_test); img_hist_ycbcr=histeq_ycbcr(img_test); if flag==1 subplot(2,3,1);imshow(img_test); subplot(2,3,2);imshow(img_hist_trans); subplot(2,3,3);imshow(img_hist_sep); subplot(2,3,4);imshow(img_hist_hsv); subplot(2,3,5);imshow(img_hist_yuv); subplot(2,3,6);imshow(img_hist_ycbcr); end end
以下是将你的Matlab代码转换为C++代码的示例:
```cpp
#include <iostream>
#include <cmath>
#include <opencv2/opencv.hpp>
cv::Mat histeq(const cv::Mat& img_test) {
cv::Mat img_hist_trans;
cv::equalizeHist(img_test, img_hist_trans);
return img_hist_trans;
}
cv::Mat hist_sep(const cv::Mat& img_test) {
std::vector<cv::Mat> channels;
cv::split(img_test, channels);
cv::Mat img_hist_sep;
cv::equalizeHist(channels[0], channels[0]);
cv::equalizeHist(channels[1], channels[1]);
cv::equalizeHist(channels[2], channels[2]);
cv::merge(channels, img_hist_sep);
return img_hist_sep;
}
cv::Mat histeq_hsv(const cv::Mat& img_test) {
cv::Mat img_hsv;
cv::cvtColor(img_test, img_hsv, cv::COLOR_BGR2HSV);
std::vector<cv::Mat> channels;
cv::split(img_hsv, channels);
cv::equalizeHist(channels[2], channels[2]);
cv::merge(channels, img_hsv);
cv::Mat img_hist_hsv;
cv::cvtColor(img_hsv, img_hist_hsv, cv::COLOR_HSV2BGR);
return img_hist_hsv;
}
cv::Mat histeq_yuv(const cv::Mat& img_test) {
cv::Mat img_yuv;
cv::cvtColor(img_test, img_yuv, cv::COLOR_BGR2YUV);
std::vector<cv::Mat> channels;
cv::split(img_yuv, channels);
cv::equalizeHist(channels[0], channels[0]);
cv::merge(channels, img_yuv);
cv::Mat img_hist_yuv;
cv::cvtColor(img_yuv, img_hist_yuv, cv::COLOR_YUV2BGR);
return img_hist_yuv;
}
cv::Mat histeq_ycbcr(const cv::Mat& img_test) {
cv::Mat img_ycbcr;
cv::cvtColor(img_test, img_ycbcr, cv::COLOR_BGR2YCrCb);
std::vector<cv::Mat> channels;
cv::split(img_ycbcr, channels);
cv::equalizeHist(channels[0], channels[0]);
cv::merge(channels, img_ycbcr);
cv::Mat img_hist_ycbcr;
cv::cvtColor(img_ycbcr, img_hist_ycbcr, cv::COLOR_YCrCb2BGR);
return img_hist_ycbcr;
}
int main() {
// Example usage
cv::Mat img_in = cv::imread("input_image.jpg"); // Load input image
int flag = 1; // Set flag to 1 for displaying outputs
// Call histeq_all function
cv::Mat img_hist_trans, img_hist_sep, img_hist_hsv, img_hist_yuv, img_hist_ycbcr;
img_hist_trans = histeq(img_in);
img_hist_sep = hist_sep(img_in);
img_hist_hsv = histeq_hsv(img_in);
img_hist_yuv = histeq_yuv(img_in);
img_hist_ycbcr = histeq_ycbcr(img_in);
if (flag == 1) {
cv::imshow("Input Image", img_in);
cv::imshow("Histogram Equalization - Traditional", img_hist_trans);
cv::imshow("Histogram Equalization - Separate Channels", img_hist_sep);
cv::imshow("Histogram Equalization - HSV", img_hist_hsv);
cv::imshow("Histogram Equalization - YUV", img_hist_yuv);
cv::imshow("Histogram Equalization - YCbCr", img_hist_ycbcr);
cv::waitKey(0);
}
return 0;
}
```
请注意,在C++中,我们使用了OpenCV库来处理图像。你需要在编译环境中安装OpenCV,并将其链接到你的项目中。另外,请在主函数`main`中修改输入图像的路径和名称。
希望对你有所帮助!如果还有其他问题,请随时提问。
阅读全文