帮我写一下matalab代码,径向基函数神经网络,基于梯度下降法确定权值与中心,5折交叉验证
时间: 2023-07-15 10:14:20 浏览: 92
基于粒子群算法(PSO)优化径向基神经网络(PSO-RBF)的分类预测 matlab代码,优化参数为扩散速度,采用交叉验证
好的,以下是一个简单的径向基函数神经网络的MATLAB代码,包括权值和中心的确定以及5折交叉验证:
```matlab
% 数据准备
load iris_dataset.mat
X = irisInputs'; % 输入数据
Y = irisTargets'; % 输出数据
% 神经网络参数
k = 10; % 隐层神经元个数
lr = 0.1; % 学习率
epochs = 1000; % 迭代次数
% 5折交叉验证
cv = cvpartition(size(X, 1), 'KFold', 5);
for i = 1:cv.NumTestSets
trIdx = cv.training(i);
teIdx = cv.test(i);
X_train = X(trIdx, :);
Y_train = Y(trIdx, :);
X_test = X(teIdx, :);
Y_test = Y(teIdx, :);
% 确定中心
centers = kmeans(X_train, k);
% 计算径向基函数输出
phi_train = zeros(size(X_train, 1), k);
for j = 1:k
phi_train(:, j) = exp(-sum((X_train - centers(j, :)).^2, 2));
end
phi_train = [ones(size(phi_train, 1), 1) phi_train];
% 随机初始化权值
W = randn(k + 1, size(Y_train, 2));
% 训练神经网络
for epoch = 1:epochs
% 计算预测值
Y_pred = phi_train * W;
% 计算损失函数
loss = mean(sum((Y_pred - Y_train).^2, 2));
% 计算梯度
grad = phi_train' * (Y_pred - Y_train) / size(X_train, 1);
% 更新权值
W = W - lr * grad;
end
% 计算测试集的径向基函数输出
phi_test = zeros(size(X_test, 1), k);
for j = 1:k
phi_test(:, j) = exp(-sum((X_test - centers(j, :)).^2, 2));
end
phi_test = [ones(size(phi_test, 1), 1) phi_test];
% 计算测试集的预测值
Y_pred_test = phi_test * W;
% 计算测试集的损失函数
loss_test = mean(sum((Y_pred_test - Y_test).^2, 2));
fprintf('Fold %d: training loss = %f, testing loss = %f\n', i, loss, loss_test);
end
```
希望对你有所帮助!
阅读全文