sklearnknn分类模型代码
时间: 2023-10-05 12:10:12 浏览: 102
可以使用下面的代码来实现使用sklearn库中的KNN分类模型:
```python
# 导入所需依赖库
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 切分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建KNN分类模型
knn = KNeighborsClassifier(n_neighbors=5)
# 在训练集上训练模型
knn.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = knn.predict(X_test)
# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
# 打印预测准确率
print("KNN分类模型的预测准确率为: ", accuracy)
```
在上述代码中,首先导入了所需的依赖库,然后加载了鸢尾花数据集。接下来,将数据集划分为训练集和测试集,然后创建了一个KNN分类模型并在训练集上进行训练。最后,使用训练好的模型对测试集进行预测,计算预测准确率并输出结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [python sklearn常用分类算法模型的调用](https://download.csdn.net/download/weixin_38543460/13783565)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [scikit-learn中kNN模型的使用及源码解读](https://blog.csdn.net/Katrina_ALi/article/details/81066896)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [机器学习模型:KNN算法代码实现](https://blog.csdn.net/weixin_43597208/article/details/130607748)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文