idx <- grep("^SNP", myalldata$SNP) #选择所有有“rs”的列 a.s <- setupSNP(data=myalldata, colSNPs = 1, sep=" ")
时间: 2024-04-05 20:31:07 浏览: 110
这段代码的作用是首先使用`grep()`函数在`myalldata`数据框的`SNP`列中选择所有以"SNP"开头的行,并将它们的索引存储在`idx`变量中。
接着,使用`setupSNP()`函数将`myalldata`数据框中的SNP数据转换为SNP矩阵。其中,`data`参数指定输入的数据框,`colSNPs`参数指定包含SNP数据的列(这里是第1列),`sep`参数指定列中SNP数据之间的分隔符(这里是空格)。转换后的SNP矩阵存储在`a.s`变量中。
需要注意的是,这里的代码是基于SNPassoc包中的函数。如果在运行这段代码之前没有安装SNPassoc包,需要先使用`install.packages("SNPassoc")`命令安装该包。另外,这段代码中使用了`^`符号表示匹配以"SNP"开头的行,如果需要匹配其他字符或正则表达式,需要相应地修改代码。
相关问题
# 定义一个函数,将单个SNP数据转换为独热编码格式 encode_SNP <- function(SNP) { encoded_SNP <- rep(0, 4) # 创建一个全0向量用于存储编码后的SNP # 根据SNP值进行编码 if (SNP == "A") { encoded_SNP[1] <- 1 } else if (SNP == "C") { encoded_SNP[2] <- 1 } else if (SNP == "G") { encoded_SNP[3] <- 1 } else if (SNP == "T") { encoded_SNP[4] <- 1 } return(encoded_SNP) } # 进行独热编码 encoded_data <- t(apply(data, 1, function(row) unlist(sapply(row, encode_SNP)))) dim(encoded_data)这样编码后的独热向量怎么用于rrblup预测表型数据?能给出代码嘛?
在使用编码后的独热向量进行rrblup预测表型数据时,需要先将编码后的独热向量作为输入数据,然后使用rrBLUP包中的函数进行建模和预测。
下面是一个简单的示例代码:
```R
library(rrBLUP)
# 假设已经得到编码后的独热向量 encoded_data 和表型数据 phenotype_data
# 将 encoded_data 和 phenotype_data 合并成一个数据框
model_data <- data.frame(encoded_data, phenotype_data)
# 分成训练集和测试集
train_idx <- sample(1:nrow(model_data), size = round(0.7 * nrow(model_data)))
train_data <- model_data[train_idx, ]
test_data <- model_data[-train_idx, ]
# 建立rrBLUP模型
model <- kinshipBLUP(phenotype ~ ., data = train_data)
# 预测测试集的表型值
predicted_phenotype <- predict(model, newdata = test_data)
# 计算预测值和观测值之间的相关系数
cor(predicted_phenotype, test_data$phenotype)
```
需要注意的是,在将编码后的独热向量用于rrBLUP预测表型数据时,需要将其作为输入数据的一部分。此外,还需要将表型数据和编码后的独热向量合并成一个数据框,并将其作为参数传递给kinshipBLUP函数。最后,使用predict函数对测试集进行预测,并计算预测值和观测值之间的相关系数。
用r语言写程序:Simulate a dataset containing continuous traits with given h^2. Split itinto training and testing datasets with proportion 4 ∶ 1.set.seed(20132014)n <- 5000p <- 1000h <- c(0.2, 0.8)[1]# simulate genotype (not exactly)x_r <- matrix(rnorm(n * p), ncol = p)xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow = TRUE)xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow = TRUE)x <- (x_r - xmean)/xsdPlease perform the marginal model.## [1] 526 776 50 557 801 345 298 559 178 214 • Show the locations of significant SNPs.• Replicate above figure, and highlight the significant coefficents in red.
Sure, here's some R code to perform the marginal model and plot the locations of significant SNPs:
```
# set seed for reproducibility
set.seed(20132014)
# simulate data
n <- 5000
p <- 1000
h <- c(0.2, 0.8)[1]
# simulate genotype (not exactly)
x_r <- matrix(rnorm(n * p), ncol = p)
xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow=TRUE)
xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow=TRUE)
x <- (x_r - xmean)/xsd
# simulate continuous trait
y <- sqrt(h) * x[,1] + sqrt(1 - h) * rnorm(n)
# split data into training and testing sets
train_idx <- sample(1:n, size=round(0.8*n), replace=FALSE)
x_train <- x[train_idx,]
y_train <- y[train_idx]
x_test <- x[-train_idx,]
y_test <- y[-train_idx]
# perform marginal model
library(glmnet)
fit <- glmnet(x_train, y_train, family="gaussian")
cv_fit <- cv.glmnet(x_train, y_train, family="gaussian")
lambda_min <- cv_fit$lambda.min
coef <- coef(fit, s=lambda_min)
# plot locations of significant SNPs
library(ggplot2)
library(dplyr)
library(tidyr)
library(ggrepel)
# get SNP names
snp_names <- paste0("SNP", 1:p)
# create data frame of SNP locations and coefficients
snp_df <- data.frame(snp_names, coef[-1])
snp_df <- snp_df %>% gather(key="snp", value="coef", -snp_names)
snp_df$significant <- snp_df$coef != 0
# plot SNP locations
ggplot(snp_df, aes(x=snp, y=1, color=significant)) +
geom_point(size=3) +
scale_color_manual(values=c("gray","red")) +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank()) +
labs(x="SNP", y="")
```
This will produce a plot of SNP locations with significant coefficients highlighted in red. You can adjust the `lambda_min` value to control the level of sparsity in the model and the number of significant SNPs identified.
阅读全文
相关推荐










