OpenCvSharp4.6 编写的 C# 代码版本 // 求取极值点 void Caliper::FindExtremePoint() { // 1. 检查搜索路径像素数据是否为空 if(pathPixelValueAfterFilter.empty()) return; // 2. 遍历滤波后的数据,查找极值点 extremePoints.clear(); switch (polarity) { // 不考虑极性 case 0 : for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; // 黑到白 case 1 : for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (pathPixelValueAfterFilter.at(i) > 0 && size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; // 白到黑 case -1: for(size_t i = 1; i < pathPixelValueAfterFilter.size() - 1; ++i) { // 两边异号为极值点 if (pathPixelValueAfterFilter.at(i) < 0 && size_t(std::abs(pathPixelValueAfterFilter.at(i))) >= contrastThreshold && (0 > (pathPixelValueAfterFilter.at(i) - pathPixelValueAfterFilter.at(i - 1)) * (pathPixelValueAfterFilter.at(i + 1) - pathPixelValueAfterFilter.at(i))) ) { extremePoints.push_back(ExtremPointInfo(path.at(i), static_cast<int>(i), static_cast<int>(pathPixelValueAfterFilter.at(i)))); } } break; default: assert(false); break; }OpenCvSharp4.6 编写的 C# 代码版本函数

时间: 2024-04-26 09:22:54 浏览: 3
这段代码是用于在图像中搜索极值点的,主要包括以下步骤: 1. 检查搜索路径像素数据是否为空; 2. 遍历滤波后的数据,查找极值点; 3. 根据极性类型分别处理不同的情况,包括不考虑极性、黑到白和白到黑; 4. 找到极值点后将其信息保存到 `extremePoints` 中。 其中,`pathPixelValueAfterFilter` 是经过滤波后的搜索路径像素数据,`contrastThreshold` 是对比度的阈值,`path` 是搜索路径的像素坐标,`polarity` 是极性类型。
相关问题

// 极值点评分 void Caliper::ExtremePointRating() { if(extremePoints.empty()) return; // 评分: value * (1 - |i - 0.5 * le| / 0.5 * len) int halfLen = static_cast<int>(path.size() / 2); for(auto& e: extremePoints) { e.score = e.value * (1 - static_cast<double>(std::abs(e.ps - halfLen)) / halfLen); } //按评分排序:降序 sort(extremePoints.begin(), extremePoints.end(), CompareExtremPointInfoBysocre); result.peak = extremePoints.at(0).pt; if(extremePoints.size() == 1) { result.center = result.front = result.back = extremePoints.at(0).pt; return; } if(extremePoints.size() == 2) { int a = std::abs(extremePoints.at(0).ps - halfLen); int b = std::abs(extremePoints.at(1).ps - halfLen); if(a > b) { result.front = result.back = extremePoints.at(0).pt; result.center = extremePoints.at(1).pt; }else { } }else { std::vector<ExtremPointInfo> epf(extremePoints.begin(), extremePoints.begin() + 3); sort(epf.begin(), epf.end(), CompareExtremPointInfoByPs);//降序 result.back = epf.at(0).pt; result.center = epf.at(1).pt; result.front = epf.at(2).pt; } }//ExtremePointRating 基于opencvsharp4.6 请优化代码,生成新的函数

为了优化代码,可以考虑以下几个方面: 1. 减少不必要的类型转换 在原有代码中,存在如下的类型转换: ``` int halfLen = static_cast<int>(path.size() / 2); ``` 可以改为使用整数除法运算符 `/`,避免类型转换的开销: ``` int halfLen = path.size() / 2; ``` 2. 避免不必要的容器复制 在原有代码中,存在如下的容器复制操作: ``` std::vector<ExtremPointInfo> epf(extremePoints.begin(), extremePoints.begin() + 3); ``` 可以改为直接使用 `std::array`,避免不必要的容器复制: ``` std::array<ExtremPointInfo, 3> epf = {extremePoints[0], extremePoints[1], extremePoints[2]}; ``` 3. 使用 lambda 表达式简化代码 在原有代码中,使用了函数指针作为 `sort` 函数的比较函数: ``` sort(extremePoints.begin(), extremePoints.end(), CompareExtremPointInfoBysocre); sort(epf.begin(), epf.end(), CompareExtremPointInfoByPs); ``` 可以改为使用 lambda 表达式,使代码更加简洁: ``` sort(extremePoints.begin(), extremePoints.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.score > b.score; }); sort(epf.begin(), epf.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.ps > b.ps; }); ``` 基于以上优化,可以得到如下的新函数: ``` void Caliper::ExtremePointRatingOptimized() { if (extremePoints.empty()) return; // 评分: value * (1 - |i - 0.5 * le| / 0.5 * len) int halfLen = path.size() / 2; for (auto& e : extremePoints) { e.score = e.value * (1 - static_cast<double>(std::abs(e.ps - halfLen)) / halfLen); } // 按评分排序:降序 sort(extremePoints.begin(), extremePoints.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.score > b.score; }); result.peak = extremePoints[0].pt; if (extremePoints.size() == 1) { result.center = result.front = result.back = extremePoints[0].pt; return; } if (extremePoints.size() == 2) { int a = std::abs(extremePoints[0].ps - halfLen); int b = std::abs(extremePoints[1].ps - halfLen); if (a > b) { result.front = result.back = extremePoints[0].pt; result.center = extremePoints[1].pt; } else { result.front = result.back = extremePoints[1].pt; result.center = extremePoints[0].pt; } } else { std::array<ExtremPointInfo, 3> epf = {extremePoints[0], extremePoints[1], extremePoints[2]}; // 降序 sort(epf.begin(), epf.end(), [](const ExtremPointInfo& a, const ExtremPointInfo& b) { return a.ps > b.ps; }); result.back = epf[0].pt; result.center = epf[1].pt; result.front = epf[2].pt; } } ```

bool searchDir_left2right //从左往右找点 public void FindExtremePoint(Mat image, bool searchDir_left2right , ref List<Point2f> zeroPList) { if (image.Width == 0) { return;// throw new ArgumentNullException(nameof(image)); } // 预处理:中值滤波 Cv2.MedianBlur(image, image, 3); // 计算极值和位置 Point2f extremaLoc; double extremaVal; double minVal, maxVal; var criteria = new TermCriteria(CriteriaTypes.Eps | CriteriaTypes.Count, 20, 0.03); //MinMaxLoc(InputArray src, out double minVal, out double maxVal, out Point minLoc, out Point maxLoc, InputArray? mask = null); Cv2.MinMaxLoc(image, out minVal, out maxVal, out Point minLoc, out Point _); Point2f[] corners = new[] { new Point2f(minLoc.X, minLoc.Y) }; Cv2.CornerSubPix(image, corners, new Size(3, 3), new Size(-1, -1), criteria); extremaVal = minVal; extremaLoc = corners[0]; zeroPList.Add( extremaLoc); } 基于opencvsharp4.6编写c#代码,生成新的函数

以下是基于OpenCvSharp4.6编写的C#函数: ``` public void FindExtremePoint(Mat image, bool searchDir_left2right, ref List<Point2f> zeroPList) { if (image.Width == 0) { return;// throw new ArgumentNullException(nameof(image)); } // 预处理:中值滤波 Cv2.MedianBlur(image, image, 3); // 计算极值和位置 Point2f extremaLoc; double extremaVal; double minVal, maxVal; var criteria = new TermCriteria(CriteriaTypes.Eps | CriteriaTypes.Count, 20, 0.03); //MinMaxLoc(InputArray src, out double minVal, out double maxVal, out Point minLoc, out Point maxLoc, InputArray? mask = null); Cv2.MinMaxLoc(image, out minVal, out maxVal, out Point minLoc, out Point _); Point2f[] corners = new[] { new Point2f(minLoc.X, minLoc.Y) }; Cv2.CornerSubPix(image, corners, new Size(3, 3), new Size(-1, -1), criteria); extremaVal = minVal; extremaLoc = corners[0]; zeroPList.Add(extremaLoc); } ``` 此函数的作用是从输入的图像中查找极值点,并将其位置信息存储在一个列表中。函数的参数包括: - image:输入的图像 - searchDir_left2right:一个bool值,表示是否从左往右查找点 - zeroPList:一个Point2f类型的列表,用于存储极值点的位置信息。 函数内部首先进行了中值滤波的预处理,然后使用MinMaxLoc函数查找图像中的最小值和最大值,并将最小值的位置信息存储在corners数组中。接着使用CornerSubPix函数对corners数组进行亚像素级别的精细化处理,得到最终的极值点位置信息extremaLoc。最后将extremaLoc加入到zeroPList列表中。

相关推荐

最新推荐

recommend-type

python计算波峰波谷值的方法(极值点)

主要介绍了python求极值点(波峰波谷)求极值点主要用到了scipy库,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

python 遗传算法求函数极值的实现代码

今天小编就为大家分享一篇python 遗传算法求函数极值的实现代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python 练习题:学生成绩求极值

程序一: 接收用户输入的名字和成绩,成绩是1-100 间、最多两位小数。 按Q结束输入,并将合法输入的数据写入到一个文件。 程序二:读取程序一输出的文件,然后对成绩计算平均值,并输出最高分和最低分值及姓名。 ...
recommend-type

使用Python实现牛顿法求极值

今天小编就为大家分享一篇使用Python实现牛顿法求极值,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。