一个IO-Link通信收发器设备IC,用STM32标准库驱动L6362的示例

时间: 2023-11-27 07:52:49 浏览: 37
以下是一个使用STM32标准库驱动L6362的IO-Link通信收发器设备IC的示例代码: ```c #include "stm32f4xx.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_usart.h" #define IO_LINK_TX_PIN GPIO_Pin_9 #define IO_LINK_RX_PIN GPIO_Pin_10 #define IO_LINK_GPIO GPIOA #define IO_LINK_USART USART1 void IO_Link_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; // Enable clock for GPIOA and USART1 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); // Configure IO-Link TX pin (PA9) as alternate function push-pull GPIO_InitStructure.GPIO_Pin = IO_LINK_TX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(IO_LINK_GPIO, &GPIO_InitStructure); // Configure IO-Link RX pin (PA10) as input floating GPIO_InitStructure.GPIO_Pin = IO_LINK_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(IO_LINK_GPIO, &GPIO_InitStructure); // Connect PA9 to USART1_Tx GPIO_PinAFConfig(IO_LINK_GPIO, GPIO_PinSource9, GPIO_AF_USART1); // Connect PA10 to USART1_Rx GPIO_PinAFConfig(IO_LINK_GPIO, GPIO_PinSource10, GPIO_AF_USART1); // Configure USART1 USART_InitStructure.USART_BaudRate = 230400; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(IO_LINK_USART, &USART_InitStructure); // Enable USART1 receive interrupt USART_ITConfig(IO_LINK_USART, USART_IT_RXNE, ENABLE); // Configure NVIC NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // Enable USART1 USART_Cmd(IO_LINK_USART, ENABLE); } void USART1_IRQHandler(void) { // Handle USART1 receive interrupt if (USART_GetITStatus(IO_LINK_USART, USART_IT_RXNE) != RESET) { // Read data from USART1 receive buffer uint16_t data = USART_ReceiveData(IO_LINK_USART); // Process received data // ... // Clear USART1 receive interrupt flag USART_ClearITPendingBit(IO_LINK_USART, USART_IT_RXNE); } } void IO_Link_Transmit(uint8_t *data, uint16_t length) { // Wait for USART1 transmit buffer to be empty while (USART_GetFlagStatus(IO_LINK_USART, USART_FLAG_TXE) == RESET); // Send start bit USART_SendData(IO_LINK_USART, 0x00); // Send data bytes for (uint16_t i = 0; i < length; i++) { // Wait for USART1 transmit buffer to be empty while (USART_GetFlagStatus(IO_LINK_USART, USART_FLAG_TXE) == RESET); // Send data byte USART_SendData(IO_LINK_USART, data[i]); } // Wait for USART1 transmit buffer to be empty while (USART_GetFlagStatus(IO_LINK_USART, USART_FLAG_TXE) == RESET); // Send stop bit USART_SendData(IO_LINK_USART, 0xFF); } ``` 在这个示例中,我们使用了STM32的USART1串口来与L6362进行通信。我们将PA9和PA10引脚分别用作USART1的Tx和Rx引脚,并且使用了230400波特率进行通信。在初始化IO-Link设备之后,我们开启了USART1的接收中断,并且在USART1_IRQHandler函数中处理了接收到的数据。在IO_Link_Transmit函数中,我们使用了帧格式化方法发送数据给IO-Link设备。 请注意,本示例代码仅供参考,实际应用中的具体实现方式可能会因为硬件和软件环境的不同而有所不同。

相关推荐

最新推荐

recommend-type

STM32单片机解码NEC红外控制器C语言程序

红外遥控器发射码值的协议有很多种,在百度文库里搜“史​上​最​全​的​红​外​遥​控​器​编​码​协​议”,可以看到是有43种,但是我们今天是解码NEC红外协议的,几乎所有的开发板带的小遥控器都是这个协议...
recommend-type

STM32驱动无刷电机的相关定时器配置

根据 TIM_TimeBaseInitStruct 中指定的参数初始化 TIMx 的时间基数单位,根据 TIM_OCInitStruct 中指定的参数初始化外设 TIMx ,复位和时钟配置;通用IO端口配置;中断向量嵌套配置。
recommend-type

vscode+platformIO开发stm32f4的实现

主要介绍了vscode+platformIO开发stm32f4的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

STM32 普通IO口 模拟串口

这两天一直在调试用普通IO口来承担串口的角色,再次做个笔记。当然广泛参考广大网友的代码在此感谢网友。首先串口的最最最基本的数据格式是由10位数据组成,注意是最最最基本的当然要有些带各种校验的那些暂时不考虑...
recommend-type

STM32单片机驱动LCD1602液晶程序

最近看到网上很多人都在找STM32单片机驱动LCD1602液晶程序,有的人写的比较复杂刚好自己最近也在搞STM32单片机。就花了点时间写出一份仅供参考和学习。单片机IO驱动能力弱这里用的是10K上拉电阻,也可以采用74HC245...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。