#模型 class Wine_net(nn.Module): def __init__(self): super(Wine_net, self).__init__() # self.ln1=nn.LayerNorm(11) self.fc1=nn.Linear(11,22) self.fc2=nn.Linear(22,44) self.fc3=nn.Linear(44,1) def forward(self,x): # x=self.ln1(x) x=self.fc1(x) x=nn.functional.relu(x) x=self.fc2(x) x=nn.functional.relu(x) x = self.fc3(x) x = nn.functional.softmax(x,dim=1) return x # 读取数据 df = pd.read_csv('winequality.csv') df1=df.drop('quality',axis=1) df2=df['quality'] # 将数据集分成10份 skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) # 遍历每一份数据,并训练模型 for train_index, test_index in skf.split(df1, df2): train_x, test_x = df1.iloc[train_index], df1.iloc[test_index] train_y, test_y = df2.iloc[train_index], df2.iloc[test_index] train_x = torch.tensor(train_x.values, dtype=torch.float32) train_y = torch.tensor(train_y.values, dtype=torch.float32) train_y = train_y.unsqueeze(1) # 定义模型、损失函数和优化器 model = Wine_net() loss_fn = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1) print(train_x) for epoch in range(1,10): # 前向传播 y_pred = model(train_x) # 计算损失 loss = loss_fn(y_pred, train_y) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() # 打印损失 print('Epoch:',epoch, 'Train Loss:', loss.item())
时间: 2024-01-22 19:02:47 浏览: 77
这段代码实现了一个简单的分类模型,使用 Wine 数据集进行训练。首先将数据集分成 10 份,然后遍历每一份数据,并使用该份数据进行训练。每一份数据都被分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。
在模型定义中,定义了一个名为 `Wine_net` 的神经网络模型,包含三个全连接层,输入特征的维度为 11,输出特征的维度为 22、44 和 1,其中前两个全连接层使用了激活函数 `ReLU`,输出层使用了 `softmax` 函数。
在训练过程中,使用了 MSE 损失函数和随机梯度下降(SGD)优化器,训练 10 个 epoch,每个 epoch 的训练损失都被打印出来。
需要注意的是,模型训练过程中,代码中使用了 `softmax` 函数,但是该函数应该在损失函数中使用。在这里,可以将输出层修改为不使用 `softmax` 函数,然后在损失函数中使用 `nn.CrossEntropyLoss()` 函数,这是一个包含了 `softmax` 函数的交叉熵损失函数。
相关问题
#模型 class Wine_net(nn.Module): def __init__(self): super(Wine_net, self).__init__() self.ln1=nn.LayerNorm(11) self.fc1=nn.Linear(11,22) self.fc2=nn.Linear(22,44) self.fc3=nn.Linear(44,1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x=nn.functional.relu(x) x=self.fc2(x) x=nn.functional.relu(x) x = self.fc3(x) x = nn.functional.softmax(x,dim=1) return x # 读取数据 df = pd.read_csv('winequality.csv') df1=df.drop('quality',axis=1) df2=df['quality'] train_x=torch.tensor(df1.values, dtype=torch.float32) train_y=torch.tensor(df2.values,dtype=torch.float32) train_y = train_y.unsqueeze(1) # 定义模型、损失函数和优化器 model=Wine_net() loss_fn=nn.MSELoss() optimizer =torch.optim.SGD(model.parameters(), lr=0.1) # 训练模型 for epoch in range(10): # 前向传播 print(epoch) y_pred = model(train_x) print(y_pred) print(epoch,'预测') # 计算损失 loss = loss_fn(y_pred, train_y) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print(loss)
这段代码实现了一个简单的神经网络模型(Wine_net),使用了MSE损失函数和SGD优化器来训练模型,训练数据是来自winequality.csv文件中的数据。
在模型定义中,Wine_net继承了nn.Module类,并在构造函数中定义了网络结构,包括三个全连接层(fc1、fc2、fc3)和一个LayerNorm层(ln1)。在forward方法中,将输入数据x传入网络中,并经过一系列的线性变换和激活函数后得到输出结果。
在训练模型时,使用一个循环来迭代训练模型10次。在每次迭代过程中,都会输出当前的损失函数值。为了进行反向传播和更新模型参数,需要调用optimizer.zero_grad()方法清空之前的梯度信息,调用loss.backward()方法计算当前的梯度信息,调用optimizer.step()方法更新模型参数。
class Tudui(nn.Module): def __init__(self): super(Tudui ,self).__init__()
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
在这段代码中,定义了一个名为Tudui的类,它继承自nn.Module类。在类的构造函数中,调用了父类nn.Module的构造函数来进行初始化操作。
阅读全文