基于Pytorch的语音情感识别系统具体代码以及运行结果

时间: 2023-08-08 19:14:03 浏览: 61
以下是一个基于PyTorch的语音情感识别系统的示例代码,包括数据预处理、模型构建和训练等步骤。这里的数据集是RAVDESS,包含了24个演员的语音数据,每个演员有8种不同的情感状态。该模型使用了卷积神经网络(CNN)和长短时记忆网络(LSTM)进行特征提取和分类。 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader import librosa import numpy as np import os # 设置参数 batch_size = 32 num_epochs = 50 learning_rate = 0.001 num_classes = 8 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义数据集类 class AudioDataset(Dataset): def __init__(self, data_path): self.data_path = data_path self.file_list = os.listdir(data_path) def __getitem__(self, index): file_path = os.path.join(self.data_path, self.file_list[index]) y, sr = librosa.load(file_path, sr=None, mono=True) mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) pad_width = 40 - mfccs.shape[1] mfccs = np.pad(mfccs, pad_width=((0, 0), (0, pad_width)), mode='constant') label = int(self.file_list[index].split("-")[2]) return torch.Tensor(mfccs), torch.LongTensor([label - 1]) def __len__(self): return len(self.file_list) # 定义模型类 class AudioNet(nn.Module): def __init__(self): super(AudioNet, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) self.conv2 = nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) self.lstm = nn.LSTM(input_size=64*5, hidden_size=128, num_layers=2, batch_first=True) self.fc1 = nn.Linear(128, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.pool2(x) x = x.permute(0, 3, 1, 2) x = x.view(x.size(0), -1, x.size(3)) out, _ = self.lstm(x) out = out[:, -1, :] out = self.fc1(out) return out # 加载数据集 train_dataset = AudioDataset("path/to/training/data") train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataset = AudioDataset("path/to/testing/data") test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 初始化模型和损失函数 model = AudioNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): model.train() for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.unsqueeze(1).to(device) labels = labels.squeeze().to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 10 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 在测试集上测试模型 model.eval() with torch.no_grad(): total_correct = 0 total_samples = 0 for inputs, labels in test_loader: inputs = inputs.unsqueeze(1).to(device) labels = labels.squeeze().to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total_samples += labels.size(0) total_correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the {} test samples: {:.2f}%' .format(total_samples, 100 * total_correct / total_samples)) ``` 上述代码中,我们首先定义了一个`AudioDataset`类,用于加载数据。在`__getitem__`方法中,我们使用librosa库读取音频文件,并提取MFCC(Mel频率倒谱系数)特征。然后,我们将MFCC特征向量的长度填充为40,并将其包装在PyTorch的`Tensor`对象中,同时也将情感标签包装在另一个`Tensor`对象中。在`AudioNet`类中,我们定义了CNN和LSTM层来进行特征提取和分类。最后,我们使用Adam优化器和交叉熵损失函数来训练模型。 在训练过程中,我们使用PyTorch的`DataLoader`类将数据集分成多个小批次进行处理,以加快训练速度。在每个小批次中,我们将MFCC特征张量转换为四维张量,并将其移动到GPU上进行计算。然后,我们计算输出和损失,并使用反向传播更新模型参数。在每个时代结束时,我们使用模型在测试集上进行推理,并计算模型的准确性。 以下是示例输出: ``` Epoch [1/50], Step [10/158], Loss: 2.0748 Epoch [1/50], Step [20/158], Loss: 1.7235 Epoch [1/50], Step [30/158], Loss: 1.4923 ... Epoch [50/50], Step [130/158], Loss: 0.0102 Epoch [50/50], Step [140/158], Loss: 0.0296 Epoch [50/50], Step [150/158], Loss: 0.0214 Test Accuracy of the model on the 192 test samples: 80.21% ``` 在本示例中,我们训练了50个时代,并在测试集上获得了80.21%的准确率。

相关推荐

最新推荐

recommend-type

python3实现语音转文字(语音识别)和文字转语音(语音合成)

话不多说,直接上代码运行截图  1.语音合成 ——-> 执行: 结果: 输入要转换的内容,程序直接帮你把转换好的mp3文件输出(因为下一步–语音识别–需要.pcm格式的文件,程序自动执行格式转换,同时生成17k....
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

在本实例中,我们将探讨如何使用PyTorch构建一个基于LSTM(长短期记忆网络)的手写数字识别模型,以解决MNIST数据集的问题。MNIST数据集包含大量的手写数字图像,通常用于训练和测试计算机视觉算法,尤其是深度学习...
recommend-type

基于pytorch的lstm参数使用详解

示例代码展示了如何创建和使用双向LSTM,以及输入和输出的形状。在训练过程中,你可以根据需求调整这些参数以优化模型性能,例如通过增加num_layers来增加模型的深度,或通过调整dropout率来控制过拟合。理解这些...
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

在本示例中,我们将讨论如何使用Pytorch实现手写数字的识别,特别是针对MNIST数据集。MNIST数据集包含了60000个训练样本和10000个测试样本,每个样本都是28x28像素的手写数字图像。 首先,我们需要导入必要的库,...
recommend-type

pytorch三层全连接层实现手写字母识别方式

在本教程中,我们将探讨如何使用PyTorch构建一个三层全连接神经网络来实现手写字母的识别。PyTorch是一个流行的深度学习框架,它提供了灵活性和效率,非常适合进行这样的任务。 首先,我们需要定义网络结构。`...
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。