基于DeepLearning4j框架, 根据已有的三位坐标点组成的路径训练Deep Q-Network (DQN)模型, 然后给出起止点的坐标,自动生成路径点坐标, 给出实现代码

时间: 2024-03-27 19:41:06 浏览: 140
以下是基于DeepLearning4j框架实现DQN模型的示例代码,用于自动生成路径点坐标: ```java import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator; import org.deeplearning4j.nn.conf.ComputationGraphConfiguration; import org.deeplearning4j.nn.conf.graph.MergeVertex; import org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex; import org.deeplearning4j.nn.conf.inputs.InputType; import org.deeplearning4j.nn.conf.layers.*; import org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor; import org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor; import org.deeplearning4j.nn.graph.ComputationGraph; import org.deeplearning4j.nn.weights.WeightInit; import org.deeplearning4j.optimize.listeners.ScoreIterationListener; import org.nd4j.linalg.activations.Activation; import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; import org.nd4j.linalg.dataset.api.preprocessor.Normalizer; import org.nd4j.linalg.dataset.api.preprocessor.NormalizerMinMaxScaler; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerSerializer; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerType; import org.nd4j.linalg.dataset.api.preprocessor.stats.MinMaxStats; import org.nd4j.linalg.dataset.api.preprocessor.stats.NormalizerStats; import org.nd4j.linalg.dataset.api.preprocessor.stats.NormalizerStats.Builder; import org.nd4j.linalg.dataset.api.preprocessor.stats.StandardDeviation; import org.nd4j.linalg.dataset.api.preprocessor.stats.StandardDeviationStats; import org.nd4j.linalg.dataset.api.preprocessor.stats.Sum; import org.nd4j.linalg.dataset.api.preprocessor.stats.SumStats; import org.nd4j.linalg.dataset.api.preprocessor.stats.Variance; import org.nd4j.linalg.dataset.api.preprocessor.stats.VarianceStats; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerSerializerStrategy; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerTypeSerializer; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerTypeSerializerStrategy; import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.learning.config.Nesterovs; import org.nd4j.linalg.lossfunctions.LossFunctions; import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; public class DQNPathGenerator { private static final int SEED = 123; private static final int BATCH_SIZE = 32; private static final int EPOCHS = 100; private static final int NUM_HIDDEN_NODES = 128; private static final double LEARNING_RATE = 0.001; private static final double L2_REGULARIZATION = 0.0001; private static final int[] OBSERVATION_SHAPE = {3}; // 3D coordinates private static final int NUM_ACTIONS = 10; // number of points to generate in the path private static final double MAX_X = 100.0; // maximum value of x coordinate private static final double MAX_Y = 100.0; // maximum value of y coordinate private static final double MAX_Z = 100.0; // maximum value of z coordinate private static final String NORMALIZER_FILENAME = "path_normalizer.bin"; public static void main(String[] args) throws IOException { // Generate training dataset List<double[]> observations = generateObservations(); List<double[]> actions = generateActions(); // Normalize dataset Normalizer normalizer = new NormalizerMinMaxScaler(); normalizer.fit(new ListDataSetIterator(new ListDataSetIterator( new ListDataSetIterator(observations, actions).next(), BATCH_SIZE).next())); normalizer.save(new File(NORMALIZER_FILENAME)); // Build DQN model ComputationGraphConfiguration config = new ComputationGraphConfiguration.Builder() .seed(SEED) .updater(new Nesterovs(LEARNING_RATE, Nesterovs.DEFAULT_NESTEROV_MOMENTUM)) .weightInit(WeightInit.XAVIER) .l2(L2_REGULARIZATION) .graphBuilder() .addInputs("input") .setInputTypes(InputType.feedForward(OBSERVATION_SHAPE[0])) .addLayer("dense1", new DenseLayer.Builder().nIn(OBSERVATION_SHAPE[0]).nOut(NUM_HIDDEN_NODES) .activation(Activation.RELU).build(), "input") .addLayer("dense2", new DenseLayer.Builder().nIn(NUM_HIDDEN_NODES).nOut(NUM_HIDDEN_NODES) .activation(Activation.RELU).build(), "dense1") .addLayer("output", new OutputLayer.Builder(LossFunctions.LossFunction.MSE).nIn(NUM_HIDDEN_NODES) .nOut(NUM_ACTIONS).activation(Activation.IDENTITY).build(), "dense2") .setOutputs("output") .build(); ComputationGraph model = new ComputationGraph(config); model.init(); model.setListeners(new ScoreIterationListener(10)); // Train model DataSetIterator iter = new ListDataSetIterator(new ListDataSetIterator(observations, actions).next(), BATCH_SIZE); normalizer.fit(iter); iter.reset(); for (int i = 0; i < EPOCHS; i++) { model.fit(iter); iter.reset(); } // Generate path double[] start = {0.0, 0.0, 0.0}; // starting point coordinates double[] end = {MAX_X, MAX_Y, MAX_Z}; // ending point coordinates double[] state = Arrays.copyOf(start, start.length); List<double[]> path = new ArrayList<>(); path.add(state); while (path.size() < NUM_ACTIONS) { // Normalize state normalizer.transform(Nd4j.create(state)); // Predict next action double[] qValues = model.outputSingle(Nd4j.create(state)); int action = Nd4j.argMax(Nd4j.create(qValues)).getInt(0); // Generate next state double[] nextState = Arrays.copyOf(state, state.length); nextState[action % 3] += (action / 3 + 1) * MAX_X / NUM_ACTIONS; path.add(nextState.clone()); // Update current state state = nextState; } System.out.println("Generated path:"); for (double[] point : path) { System.out.println(Arrays.toString(point)); } } private static List<double[]> generateObservations() { List<double[]> observations = new ArrayList<>(); for (int i = 0; i < NUM_ACTIONS - 1; i++) { double[] observation = {Math.random() * MAX_X, Math.random() * MAX_Y, Math.random() * MAX_Z}; observations.add(observation); } return observations; } private static List<double[]> generateActions() { List<double[]> actions = new ArrayList<>(); for (int i = 0; i < NUM_ACTIONS; i++) { double[] action = new double[NUM_ACTIONS]; action[i] = 1.0; actions.add(action); } return actions; } } ``` 该代码首先生成了包含三维坐标点的观测数据和目标动作数据,然后将这些数据归一化,并构建了一个包含两个密集层和一个输出层的DQN模型。在训练模型之后,该代码使用模型预测从起点到终点的路径,生成包含一系列三维坐标点的路径数据。 最后,需要注意的是,该代码中使用的归一化器是MinMaxScaler,它将数据缩放到指定的最小值和最大值之间。如果需要使用其他类型的归一化器,请根据具体情况进行更改。
阅读全文

相关推荐

最新推荐

recommend-type

用Q-learning算法实现自动走迷宫机器人的方法示例

在本文中,我们将深入探讨如何使用Q-learning算法来实现一个能自动走迷宫的机器人。Q-learning是一种强化学习算法,它允许智能体通过与环境的交互来学习最优策略,以达到最大化长期奖励的目标。 首先,我们要理解...
recommend-type

Java基于springboot+vue的校园自助洗衣服务管理系统的设计与实现.rar

【基于Springboot+Vue的设计与实现】高分通过项目,已获导师指导。 本项目是一套基于Springboot+Vue的管理系统,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的Java学习者。也可作为课程设计、期末大作业 包含:项目源码、数据库脚本、开发说明文档、部署视频、代码讲解视频、全套软件等,该项目可以直接作为毕设使用。 项目都经过严格调试,确保可以运行! 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7数据库工具:Navicat11开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

广义表的基本操作与高级功能

这份资料详细介绍了广义表(Generalized List)这一重要的数据结构。广义表是一种递归数据结构,其元素可以是原子(基本数据类型,如数字、字符)或者子表(另一个广义表),具有灵活性和递归性的特点。 资料主要包含七个部分:基本概念介绍、表示方法、存储结构、基本操作、高级操作、应用场景和优化策略。在基本操作部分,详细讲解了创建、遍历、插入、删除等功能的具体实现,每个操作都配有完整的C语言代码示例。在应用场景部分,展示了广义表在表示嵌套表达式、树结构和多层嵌套数据等实际场景中的应用。针对实现过程中可能遇到的内存管理、递归效率、栈溢出等问题,资料也提供了相应的优化策略和解决方案。
recommend-type

舷侧和端射天线阵列辐射方向图 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依