基于DeepLearning4j框架, 根据已有的三位坐标点组成的路径训练Deep Q-Network (DQN)模型, 然后给出起止点的坐标,自动生成路径点坐标, 给出实现代码
时间: 2024-03-27 19:41:06 浏览: 140
以下是基于DeepLearning4j框架实现DQN模型的示例代码,用于自动生成路径点坐标:
```java
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.graph.MergeVertex;
import org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor;
import org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.Normalizer;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerMinMaxScaler;
import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerSerializer;
import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerType;
import org.nd4j.linalg.dataset.api.preprocessor.stats.MinMaxStats;
import org.nd4j.linalg.dataset.api.preprocessor.stats.NormalizerStats;
import org.nd4j.linalg.dataset.api.preprocessor.stats.NormalizerStats.Builder;
import org.nd4j.linalg.dataset.api.preprocessor.stats.StandardDeviation;
import org.nd4j.linalg.dataset.api.preprocessor.stats.StandardDeviationStats;
import org.nd4j.linalg.dataset.api.preprocessor.stats.Sum;
import org.nd4j.linalg.dataset.api.preprocessor.stats.SumStats;
import org.nd4j.linalg.dataset.api.preprocessor.stats.Variance;
import org.nd4j.linalg.dataset.api.preprocessor.stats.VarianceStats;
import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerSerializerStrategy;
import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerTypeSerializer;
import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerTypeSerializerStrategy;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class DQNPathGenerator {
private static final int SEED = 123;
private static final int BATCH_SIZE = 32;
private static final int EPOCHS = 100;
private static final int NUM_HIDDEN_NODES = 128;
private static final double LEARNING_RATE = 0.001;
private static final double L2_REGULARIZATION = 0.0001;
private static final int[] OBSERVATION_SHAPE = {3}; // 3D coordinates
private static final int NUM_ACTIONS = 10; // number of points to generate in the path
private static final double MAX_X = 100.0; // maximum value of x coordinate
private static final double MAX_Y = 100.0; // maximum value of y coordinate
private static final double MAX_Z = 100.0; // maximum value of z coordinate
private static final String NORMALIZER_FILENAME = "path_normalizer.bin";
public static void main(String[] args) throws IOException {
// Generate training dataset
List<double[]> observations = generateObservations();
List<double[]> actions = generateActions();
// Normalize dataset
Normalizer normalizer = new NormalizerMinMaxScaler();
normalizer.fit(new ListDataSetIterator(new ListDataSetIterator(
new ListDataSetIterator(observations, actions).next(), BATCH_SIZE).next()));
normalizer.save(new File(NORMALIZER_FILENAME));
// Build DQN model
ComputationGraphConfiguration config = new ComputationGraphConfiguration.Builder()
.seed(SEED)
.updater(new Nesterovs(LEARNING_RATE, Nesterovs.DEFAULT_NESTEROV_MOMENTUM))
.weightInit(WeightInit.XAVIER)
.l2(L2_REGULARIZATION)
.graphBuilder()
.addInputs("input")
.setInputTypes(InputType.feedForward(OBSERVATION_SHAPE[0]))
.addLayer("dense1", new DenseLayer.Builder().nIn(OBSERVATION_SHAPE[0]).nOut(NUM_HIDDEN_NODES)
.activation(Activation.RELU).build(), "input")
.addLayer("dense2", new DenseLayer.Builder().nIn(NUM_HIDDEN_NODES).nOut(NUM_HIDDEN_NODES)
.activation(Activation.RELU).build(), "dense1")
.addLayer("output", new OutputLayer.Builder(LossFunctions.LossFunction.MSE).nIn(NUM_HIDDEN_NODES)
.nOut(NUM_ACTIONS).activation(Activation.IDENTITY).build(), "dense2")
.setOutputs("output")
.build();
ComputationGraph model = new ComputationGraph(config);
model.init();
model.setListeners(new ScoreIterationListener(10));
// Train model
DataSetIterator iter = new ListDataSetIterator(new ListDataSetIterator(observations, actions).next(), BATCH_SIZE);
normalizer.fit(iter);
iter.reset();
for (int i = 0; i < EPOCHS; i++) {
model.fit(iter);
iter.reset();
}
// Generate path
double[] start = {0.0, 0.0, 0.0}; // starting point coordinates
double[] end = {MAX_X, MAX_Y, MAX_Z}; // ending point coordinates
double[] state = Arrays.copyOf(start, start.length);
List<double[]> path = new ArrayList<>();
path.add(state);
while (path.size() < NUM_ACTIONS) {
// Normalize state
normalizer.transform(Nd4j.create(state));
// Predict next action
double[] qValues = model.outputSingle(Nd4j.create(state));
int action = Nd4j.argMax(Nd4j.create(qValues)).getInt(0);
// Generate next state
double[] nextState = Arrays.copyOf(state, state.length);
nextState[action % 3] += (action / 3 + 1) * MAX_X / NUM_ACTIONS;
path.add(nextState.clone());
// Update current state
state = nextState;
}
System.out.println("Generated path:");
for (double[] point : path) {
System.out.println(Arrays.toString(point));
}
}
private static List<double[]> generateObservations() {
List<double[]> observations = new ArrayList<>();
for (int i = 0; i < NUM_ACTIONS - 1; i++) {
double[] observation = {Math.random() * MAX_X, Math.random() * MAX_Y, Math.random() * MAX_Z};
observations.add(observation);
}
return observations;
}
private static List<double[]> generateActions() {
List<double[]> actions = new ArrayList<>();
for (int i = 0; i < NUM_ACTIONS; i++) {
double[] action = new double[NUM_ACTIONS];
action[i] = 1.0;
actions.add(action);
}
return actions;
}
}
```
该代码首先生成了包含三维坐标点的观测数据和目标动作数据,然后将这些数据归一化,并构建了一个包含两个密集层和一个输出层的DQN模型。在训练模型之后,该代码使用模型预测从起点到终点的路径,生成包含一系列三维坐标点的路径数据。
最后,需要注意的是,该代码中使用的归一化器是MinMaxScaler,它将数据缩放到指定的最小值和最大值之间。如果需要使用其他类型的归一化器,请根据具体情况进行更改。
阅读全文