改bug % 定义因子图 factors = {{'A','B'},{'B','C'},{'C','D'},{'C','E'}}; values = [0.9, 0.1; 0.4, 0.6; 0.8, 0.2; 0.2, 0.8]; fg = struct('var', [], 'card', [], 'val', []); for i=1:length(factors) fg(i).var = factors{i}; fg(i).card = [2, 2]; fg(i).val = reshape(values(i,:), 2, 2); end % 初始化变量节点的信念 bel = repmat(struct('var', [], 'card', [], 'val', []), 1, length(fg)); for i=1:length(bel) bel(i).var = fg(i).var; bel(i).card = fg(i).card; bel(i).val = ones(1, prod(bel(i).card)); end % 迭代更新信念 max_iters = 10; tolerance = 1e-6; for iter=1:max_iters old_bel = bel; for i=1:length(fg) vars = fg(i).var; dom = [vars{1}, vars{2}]; non_dom = setdiff(1:length(fg), i); prod_val = 1; for j=1:length(non_dom) prod_val = factor_product(prod_val, old_bel(non_dom(j))); end msg = struct('var', [], 'card', [], 'val', []); msg.var = vars{2}; msg.card = fg(i).card(2); for j=1:length(vars{2}) val = prod_val.val; for k=1:length(vars{1}) idx = j + (k - 1) * msg.card; val(idx) = val(idx) * fg(i).val(k, j); end msg.val(j) = sum(val); end bel(vars{2}) = factor_normalize(msg); end % 检查收敛 converged = 1; for i=1:length(bel) if max(abs(bel(i).val - old_bel(i).val)) > tolerance converged = 0; break; end end if converged break; end end % 输出最终的信念分布 for i=1:length(bel) fprintf('%s: [%.4f %.4f]\n', bel(i).var{1}, bel(i).val(1), bel(i).val(2)); end
时间: 2023-12-10 11:38:34 浏览: 105
这段代码实现了因子图的迭代信念传播算法,但存在一个小错误。在因子图的定义中,变量节点是由单个变量定义的,而不是由一个变量组成的。因此,在初始化变量节点的信念时,应该将每个变量视为单个节点,而不是将因子图中的每个因子视为一个节点。下面是修改后的代码:
```
% 定义因子图
factors = {{'A','B'},{'B','C'},{'C','D'},{'C','E'}};
values = [0.9, 0.1; 0.4, 0.6; 0.8, 0.2; 0.2, 0.8];
fg = struct('var', [], 'card', [], 'val', []);
for i=1:length(factors)
fg(i).var = factors{i};
fg(i).card = [2, 2];
fg(i).val = reshape(values(i,:), 2, 2);
end
% 初始化变量节点的信念
bel = repmat(struct('var', [], 'card', [], 'val', []), 1, length(unique([fg.var])));
for i=1:length(bel)
bel(i).var = {char('A'-1+i)};
bel(i).card = [2];
bel(i).val = [0.5, 0.5];
end
% 迭代更新信念
max_iters = 10;
tolerance = 1e-6;
for iter=1:max_iters
old_bel = bel;
for i=1:length(fg)
vars = fg(i).var;
dom = [vars{1}, vars{2}];
non_dom = setdiff(1:length(fg), i);
prod_val = 1;
for j=1:length(non_dom)
prod_val = factor_product(prod_val, old_bel(find_index_of_var(old_bel, fg(non_dom(j)).var))));
end
msg = struct('var', [], 'card', [], 'val', []);
msg.var = vars{2};
msg.card = fg(i).card(2);
for j=1:length(vars{2})
val = prod_val.val;
for k=1:length(vars{1})
idx = j + (k - 1) * msg.card;
val(idx) = val(idx) * fg(i).val(k, j);
end
msg.val(j) = sum(val);
end
bel(find_index_of_var(bel, msg.var)) = factor_normalize(msg);
end
% 检查收敛
converged = 1;
for i=1:length(bel)
if max(abs(bel(i).val - old_bel(i).val)) > tolerance
converged = 0;
break;
end
end
if converged
break;
end
end
% 输出最终的信念分布
for i=1:length(bel)
fprintf('%s: [%.4f %.4f]\n', bel(i).var{1}, bel(i).val(1), bel(i).val(2));
end
```
注意,修改后的代码中使用了 `find_index_of_var` 函数来查找变量在 `bel` 中的索引,这个函数的实现如下:
```
function idx = find_index_of_var(factors, var)
% 根据变量名查找在因子图中对应的变量节点的索引
%
% 输入:
% factors - 变量节点数组
% var - 待查找的变量名
% 输出:
% idx - 变量节点在数组中的索引
for i=1:length(factors)
if strcmp(factors(i).var{1}, var)
idx = i;
return;
end
end
error('Variable not found.');
end
```
阅读全文