python数据预处理。从文件中读取数据到DataFrame中,对手机评论数据利用jieba模块进行分词、去除停用词等进行处理。
时间: 2024-03-14 22:47:16 浏览: 55
python使用jieba实现中文分词去停用词方法示例
好的,我可以为您解答这个问题。
首先,我们需要导入需要的库和模块:
```python
import pandas as pd
import jieba
from jieba import analyse
import re
```
接下来,我们可以读取数据文件(假设为csv格式),将其转换成DataFrame类型:
```python
data = pd.read_csv('data.csv')
```
然后,我们可以对数据进行处理。首先,我们需要定义一个函数,用于分词、去除停用词等处理:
```python
def clean_text(text):
# 使用正则表达式去除标点符号和特殊字符
text = re.sub('[^\w\s]', '', text)
# 分词
seg_list = jieba.cut(text, cut_all=False)
# 去除停用词
stopwords = [line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8').readlines()] # 读取停用词表
seg_list = [word for word in seg_list if word not in stopwords]
# 返回处理后的结果
return ' '.join(seg_list)
```
其中,stopwords.txt是一个存储停用词的文件,需要事先准备好。
接下来,我们可以使用apply方法将该函数应用到所有评论数据上:
```python
data['cleaned_text'] = data['text'].apply(clean_text)
```
最后,我们可以将处理后的数据保存到文件中:
```python
data.to_csv('cleaned_data.csv', index=False)
```
这样,我们就完成了对手机评论数据的预处理,得到了一个干净的、可以用于后续分析的数据集。
阅读全文