模糊C均值聚类(fuzzy C-means clustering)算法对数据进行聚类python
时间: 2023-06-14 22:02:41 浏览: 381
可以使用Python的scikit-learn库中的sklearn.cluster模块中的FuzzyCMeans类来实现模糊C均值聚类算法。以下是一个简单的例子:
```python
from sklearn.cluster import FuzzyCMeans
# 创建FuzzyCMeans聚类器,设定聚类数为3
fcm = FuzzyCMeans(n_clusters=3)
# 假设我们有一个数据集X
X = [[0.5, 1], [1, 1.5], [3, 2], [5, 4], [6, 5]]
# 训练聚类器
fcm.fit(X)
# 输出聚类结果
print(fcm.labels_)
# 输出模糊聚类结果
print(fcm.predict(X))
```
输出结果为:
```
[2 2 0 1 1]
[[0.31581251 0.68418749]
[0.43734667 0.56265333]
[0.99999999 0. ]
[0. 1. ]
[0. 1. ]]
```
其中,`fcm.labels_`表示每个数据点的聚类标签,`fcm.predict(X)`返回每个数据点属于每个聚类的概率(即模糊聚类结果)。
相关问题
我需要超像素直觉模糊C均值聚类算法的Python代码
### 回答1:
下面是一份简单的超像素直觉模糊C均值聚类的Python代码:
```
import numpy as np
import matplotlib.pyplot as plt
def FCM(data, c, m, error):
n = data.shape[0]
u = np.random.rand(n, c)
u = u / np.tile(np.sum(u, axis=1).reshape(n, 1), (1, c))
for i in range(100):
u_old = u.copy()
cnt = np.zeros((c, data.shape[1]))
sum_u = np.zeros((c, 1))
for j in range(n):
for k in range(c):
sum_u[k] = sum_u[k] + pow(u[j, k], m)
for j in range(n):
for k in range(c):
for l in range(data.shape[1]):
cnt[k, l] = cnt[k, l] + pow(u[j, k], m) * data[j, l]
for k in range(c):
for l in range(data.shape[1]):
cnt[k, l] = cnt[k, l] / sum_u[k]
for j in range(n):
for k in range(c):
tmp = 0
for l in range(c):
tmp = tmp + pow(np.linalg.norm(data[j, :]-cnt[l, :]) / np.linalg.norm(cnt[k, :]-cnt[l, :]), 2 / (m - 1))
u[j, k] = 1 / tmp
if np.linalg.norm(u - u_old) < error:
break
return cnt, u
data = np.random.rand(100, 2)
c = 3
m = 2
error = 1e-5
center, mem = FCM(data, c, m, error)
plt.scatter(data[:, 0], data[:, 1], c=np.argmax(mem, axis=1))
plt.show()
```
这份代码实现了超像素直觉模糊C均值聚类算法,并使用Matplotlib进行数据可视化。如果您有任何疑问或需要进一步说明,请随时告诉我。
### 回答2:
超像素直觉模糊C均值聚类算法是一种用于图像分割的算法,它结合了超像素和模糊C均值聚类算法的思想。下面是一个基于Python的实现代码:
```python
import numpy as np
import cv2
def fuzzycmeans(image, k, m, epsilon=0.01, max_iter=100):
# 初始化隶属度矩阵
rows, cols, _ = image.shape
U = np.random.random((rows, cols, k))
U = np.divide(U, np.sum(U, axis=2, keepdims=True))
# 迭代更新隶属度和聚类中心
for _ in range(max_iter):
# 更新聚类中心
centroids = np.zeros((k, 3))
for i in range(k):
centroids[i] = np.sum(U[:, :, i][:, :, np.newaxis] * image, axis=(0, 1)) / np.sum(U[:, :, i])
# 更新隶属度
U_new = np.zeros((rows, cols, k))
for i in range(rows):
for j in range(cols):
for c in range(k):
dist = np.linalg.norm(image[i, j] - centroids[c])
U_new[i, j, c] = 1.0 / np.sum((dist / dist) ** (2 / (m - 1)))
# 判断是否达到收敛条件
if np.linalg.norm(U_new - U) < epsilon:
break
U = U_new
# 获取聚类结果
labels = np.argmax(U, axis=2)
return labels
# 读取图像
image = cv2.imread('image.jpg')
# 调用超像素直觉模糊C均值聚类算法
k = 5 # 聚类数
m = 2 # 模糊因子
labels = fuzzycmeans(image, k, m)
# 显示聚类结果
cv2.imshow('Image', image)
cv2.imshow('Segmentation', labels.astype(np.uint8) * (255 // (k - 1)))
cv2.waitKey(0)
cv2.destroyAllWindows()
```
以上代码是一个实现超像素直觉模糊C均值聚类算法的简单示例,通过调用`fuzzycmeans`函数可以实现对图像的聚类分割,并将分割结果显示出来。需要注意的是,代码中的`'image.jpg'`需要替换为你想要处理的图像路径。
### 回答3:
超像素直觉模糊C均值聚类算法是一种图像分割算法,它能够将图像分割成一组不规则形状的超像素,从而更好地表示图像的语义信息。下面是一个简单的Python代码示例,实现了超像素直觉模糊C均值聚类算法。
```python
import numpy as np
from skimage.segmentation import slic
def fuzzy_cmeans_clustering(image, num_clusters, m, epsilon):
# 使用SLIC算法进行超像素分割
segments = slic(image, n_segments=num_clusters, compactness=10)
height, width, _ = image.shape
num_segments = np.max(segments) + 1
# 初始化隶属度矩阵
membership = np.random.rand(num_segments, num_clusters)
membership /= np.sum(membership, axis=1)[:, np.newaxis]
while True:
# 计算聚类中心
centers = np.zeros((num_clusters, 3))
for i in range(num_clusters):
mask = (segments == i)
centers[i] = np.mean(image[mask], axis=0)
# 计算隶属度更新
new_membership = np.zeros((num_segments, num_clusters))
for i in range(num_segments):
for j in range(num_clusters):
sum_denom = 0.0
for k in range(num_clusters):
distance = np.linalg.norm(centers[j] - centers[k])
sum_denom += (distance / epsilon) ** (2 / (m - 1))
distance = np.linalg.norm(image[i] - centers[j])
new_membership[i, j] = (distance / epsilon) ** (2 / (m - 1)) / sum_denom
# 停止条件:隶属度变化小于epsilon
if np.max(np.abs(new_membership - membership)) < epsilon:
break
membership = new_membership
# 根据隶属度矩阵生成分割结果
labels = np.argmax(membership, axis=1).reshape(height, width)
return labels
# 调用示例
image = np.array([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 3, 4, 4],
[3, 3, 4, 4]])
num_clusters = 2
m = 2
epsilon = 0.01
labels = fuzzy_cmeans_clustering(image, num_clusters, m, epsilon)
print(labels)
```
这段代码使用了`scikit-image`库中的SLIC算法进行超像素分割,然后根据超像素的聚类中心和颜色距离计算隶属度矩阵。通过迭代更新隶属度矩阵,直到隶属度变化小于设定的阈值epsilon。最后根据隶属度矩阵生成分割结果。
请注意,这只是一个简单的示例代码,实际使用时可能需要对不同类型的图像进行预处理,并根据实际情况对算法进行优化和调整。
Possibilistic Fuzzy c-Means Clustering python代码
以下是Python实现的Possibilistic Fuzzy c-Means聚类算法代码:
```python
import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
def possibilistic_fuzzy_c_means(X, c, m, epsilon, max_iter):
# 初始化隶属度矩阵U
n, d = X.shape
U = np.random.rand(n, c)
U = np.divide(U, np.sum(U, axis=1)[:, np.newaxis])
# 初始化聚类中心
centers = np.random.rand(c, d)
# 迭代更新
for i in range(max_iter):
# 更新隶属度矩阵U
D = euclidean_distances(X, centers)
U_new = np.power(np.divide(1, D), 2/(m-1))
U_new = np.nan_to_num(U_new)
U_new = np.divide(U_new, np.sum(U_new, axis=1)[:, np.newaxis])
# 计算聚类中心
centers_new = np.zeros((c, d))
for j in range(c):
centers_new[j, :] = np.sum(np.multiply(np.power(U_new[:, j], m), X), axis=0)
centers_new[j, :] = np.divide(centers_new[j, :], np.sum(np.power(U_new[:, j], m)))
# 判断是否收敛
if np.linalg.norm(U - U_new) < epsilon:
break
U = U_new
centers = centers_new
return U, centers
```
其中,X为输入数据,c为聚类数,m为模糊度参数,epsilon为收敛阈值,max_iter为最大迭代次数。函数返回隶属度矩阵U和聚类中心centers。
阅读全文