% 读入语音 [Input, Fs] = audioread('sp01.wav'); Time = (0:1/Fs:(length(Input)-1)/Fs)'; Input = Input(:,1); SNR=10; [NoisyInput,Noise] = add_noise(Input,SNR);%加噪 %% 算法 [spectruesub_enspeech] = spectruesub(NoisyInput); [wiener_enspeech] = wienerfilter(NoisyInput); [Klaman_Output] = kalman(NoisyInput,Fs,Noise); %将长度对齐 sig_len=length(spectruesub_enspeech); NoisyInput=NoisyInput(1:sig_len); Input=Input(1:sig_len); wiener_enspeech=wiener_enspeech(1:sig_len); Klaman_Output=Klaman_Output(1:sig_len); Time = (0:1/Fs:(sig_len-1)/Fs)'; figure(1) MAX_Am(1)=max(Input); MAX_Am(2)=max(NoisyInput); MAX_Am(3)=max(spectruesub_enspeech); subplot(3,1,1); plot(Time, Input) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('原始') subplot(3,1,2); plot(Time, NoisyInput) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('加噪') subplot(3,1,3); plot(Time, spectruesub_enspeech) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('谱减法') figure(2) MAX_Am(1)=max(Input); MAX_Am(2)=max(NoisyInput); MAX_Am(3)=max(wiener_enspeech); subplot(3,1,1); plot(Time, Input) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('原始') subplot(3,1,2); plot(Time, NoisyInput) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('加噪') subplot(3,1,3); plot(Time, wiener_enspeech) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('维纳滤波') figure(3) MAX_Am(1)=max(Input); MAX_Am(2)=max(NoisyInput); MAX_Am(3)=max(Klaman_Output); subplot(3,1,1); plot(Time, Input) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('原始') subplot(3,1,2); plot(Time, NoisyInput) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('加噪') subplot(3,1,3); plot(Time, Klaman_Output) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('卡尔曼滤波')

时间: 2024-03-31 20:38:33 浏览: 170
这段代码主要是针对语音信号进行去噪处理,并比较了三种不同的去噪算法(谱减法、维纳滤波、卡尔曼滤波)的效果。代码中的主要步骤如下: 1. 读取语音信号文件,使用`audioread()`函数。 2. 添加噪声,使用`add_noise()`函数。 3. 分别使用谱减法、维纳滤波和卡尔曼滤波算法进行去噪处理。 4. 将不同算法处理后的信号长度对齐。 5. 绘制三个算法去噪后的信号波形图,使用`subplot()`函数将三张图分别显示在一个图像窗口中。 在绘制波形图时,使用了MATLAB的`subplot()`函数,将三个子图分别显示在一个图像窗口中。并且使用了`plot()`函数绘制波形图,使用`ylim()`函数设置y轴的范围,以便更好地展示波形。另外,还使用了`title()`、`xlabel()`和`ylabel()`函数分别设置图像的标题、x轴和y轴的标签。
相关问题

% 读入语音 [Input, Fs] = audioread('sp01.wav'); Time = (0:1/Fs:(length(Input)-1)/Fs)'; Input = Input(:,1); SNR=10; [NoisyInput,Noise] = add_noise(Input,SNR);%加噪 %% 算法 [spectruesub_enspeech] = spectruesub(NoisyInput); [wiener_enspeech] = wienerfilter(NoisyInput); [Klaman_Output] = kalman(NoisyInput,Fs,Noise); %将长度对齐 sig_len=length(spectruesub_enspeech); NoisyInput=NoisyInput(1:sig_len); Input=Input(1:sig_len); wiener_enspeech=wiener_enspeech(1:sig_len); Klaman_Output=Klaman_Output(1:sig_len); Time = (0:1/Fs:(sig_len-1)/Fs)';

这段代码中,你读入了一个名为"sp01.wav"的语音文件,并将其存储在Input中。接着,你使用add_noise函数为其添加了一定的噪声,并将处理后的语音信号存储在NoisyInput中。 然后,你使用了三种语音增强算法:spectruesub、wienerfilter和kalman。这些算法通过对NoisyInput进行处理,试图去除噪声并还原原始语音信号。处理后的信号分别存储在spectruesub_enspeech、wiener_enspeech和Klaman_Output中。 最后,你将处理后的信号长度对齐,并存储在相应的变量中。Time变量是一个时间轴,用于可视化和分析处理后的语音信号。

arm架构下的麒麟v10 sp01上安装kerberos?

在ARM架构下的麒麟V10 SP01上安装Kerberos需要进行以下步骤: 1. 安装Kerberos软件包:在麒麟V10 SP01上安装Kerberos需要先下载Kerberos的软件包,然后进行解压缩和安装。可以使用Linux系统自带的命令来安装软件包,比如使用dpkg来进行安装。 2. 配置Kerberos服务器:安装完Kerberos软件包后,需要对Kerberos服务器进行配置。配置主要包括设置域名和Kerberos服务的角色等,可以通过修改配置文件进行设置。 3. 安装客户端:在Kerberos服务器配置好后,需要在麒麟V10 SP01上安装Kerberos客户端。安装客户端后,即可通过Kerberos身份验证实现对服务器的访问。 4. 配置Kerberos客户端:安装完Kerberos客户端后,需要进行配置。主要配置包括设置Kerberos服务器、realm域和Kerberos身份验证文件等。 5. 测试验证:在完成上述步骤后,即可对Kerberos进行测试验证。测试通过后,即可在ARM架构下的麒麟V10 SP01上成功安装Kerberos。 总之,在ARM架构下的麒麟V10 SP01上安装Kerberos需要进行多个步骤,并需仔细配置各项参数。安装成功后,可以实现对服务器的安全访问。
阅读全文

相关推荐

大家在看

recommend-type

FineBI Windows版本安装手册

非常详细 一定安装成功
recommend-type

电子秤Multisim仿真+数字电路.zip

电子秤Multisim仿真+数字电路
recommend-type

计算机与人脑-形式语言与自动机

计算机与人脑 观点一:计算机的能力不如人脑的能力  – 计算机无法解决不可判定问题;  – 人脑能够部分解决不可判定问题; 例如:判定任意一个程序是否输出“hello world”。 • 观点二:计算机的能力与人脑的能力相当  – 人脑由神经元细胞构成,每个神经元相当于一个有限状态自动机,神经 元之间的连接是不断变化的,所以人脑相当于一个极其复杂的不断变化的 有限状态自动机;  – 计算机能够模拟所有图灵机,也就能够模拟所有有限状态自动机。
recommend-type

基于CZT和ZoomFFT法的频谱细化在电动机故障诊断中的应用

随着工业自动化的发展,笼型异步电动机被广泛采用,转子断条与偏心是常见的故障。传统频谱分析技术已不能满足故障诊断的需求,近年来在传统傅里叶算法基础上发展起来的频谱细化分析技术得到了迅速发展。常用频谱细化方法有FFT-FS法、Yip-Zoom法、CZT变换分段法和基于复调制的ZoomFFT法。后两种方法更优越,使用范围也广。通过Matlab用CZT和ZoomFFT两种方法进行断条故障仿真实验,对比频谱细化图得出ZoomFFT较CZT更具优势的结论。
recommend-type

用单片机实现声级计智能

声级计又称噪声计,是用来测量声音的声压或声级的一种仪器。声级计可以用来测量机械噪声、车辆噪声、环境噪声以及其它各种噪声。声级计按其用途可分为普通声级计,脉冲声级计,分声级计等。

最新推荐

recommend-type

BREW Tool Suite_AppLoader下载及安装说明

下载BREW开发工具包,文件名为BREWTOOLSSUITE311SP01.zip。解压缩后,你会找到一个扩展名为.msi的安装文件,即BREWTOOLSSUITE311SP02。双击这个文件开始安装过程。 安装过程中,你可以选择默认的安装路径,也可以...
recommend-type

基于springboot的在线答疑系统文件源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

最简单,最实用的数据库文档生成工具,支持SqlServer/MySQL/Oracle/PostgreSQL/DB2/SQLite数据库

DBCHM 是一款数据库文档生成工具! 该工具从最初支持chm文档格式开始,通过开源,集思广益,不断改进,又陆续支持word、excel、pdf、html、xml、markdown等文档格式的导出。
recommend-type

基于springboot的微服务的旅行社门店系统的设计实现源码(java毕业设计完整源码+LW).zip

功能说明:可以管理首页、个人中心、用户管理、旅行社管理、产品分类管理、门店公告管理、行政中心管理、订单信息管理、合同信息管理、社区留言、系统管理等功能模块。环境说明:开发语言:Java框架:springboot,mybatisJDK版本:JDK1.8数据库:mysql 5.7数据库工具:Navicat11开发软件:eclipse/ideaMaven包:Maven3.6
recommend-type

“书籍导航”:构建高效的图书管理系统

在信息化技术不断进步和现代经济快速发展的今天,传统的数据管理方式已经被软件化的存储、归纳和集中处理所取代。图书管理系统正是在这种背景下应运而生,旨在帮助管理者高效处理大量数据信息,提升事务处理效率,实现高效工作的目标。该系统采用成熟的SSM框架,利用跨平台的Java语言开发,数据库则选用广泛使用的MySQL,以满足大型商业网站的需求。 系统实现了用户在线选书、答题和查看考核分数的功能,同时,管理员可以进行字典管理、留言板管理、书籍管理、书籍收藏管理、书籍留言管理、书籍借阅订单管理、书籍挂失管理、书籍需求管理、用户管理和管理员管理等。图书管理系统的界面设计简洁美观,功能模块布局与同类网站保持一致,不仅实现了基本功能,还提供了数据安全问题的实用解决方案。该系统不仅提高了管理者处理工作事务的效率,而且实现了数据信息管理的整体化、规范化和自动化。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"