用matlab中的s函数实现基于拓展卡尔曼滤波的三个姿态角感知(传感器为一个三轴加速度计、一个三轴陀螺仪、一个三轴磁强计;采用四元数进行计算)给出代码
时间: 2023-06-18 09:06:49 浏览: 89
以下是基于拓展卡尔曼滤波的三个姿态角感知的MATLAB代码:
```
function [roll, pitch, yaw] = ekf_attitude_estimation(acc, gyro, mag, Ts)
% acc, gyro, mag: 3-axis accelerometer, gyroscope, and magnetometer measurements
% Ts: sampling time
% roll, pitch, yaw: estimated Euler angles
% Define initial states
x = [0;0;0;1;0;0;0]; % [phi; theta; psi; q0; q1; q2; q3]
P = eye(7);
% Define process noise covariance
Q = diag([0.1; 0.1; 0.1; 0.01; 0.01; 0.01; 0.01]);
% Define measurement noise covariance
R = diag([0.1; 0.1; 0.1]);
% Define measurement matrix
H = [eye(3), zeros(3,4)];
% Define identity matrix
I = eye(7);
% Define gyroscope bias
bias = zeros(3,1);
% Define magnetic declination angle
declination = 0; % in radians
% Initialize estimated Euler angles
roll = zeros(size(acc,2),1);
pitch = zeros(size(acc,2),1);
yaw = zeros(size(acc,2),1);
for i = 1:size(acc,2)
% Predict state and covariance using quaternion kinematics
omega = deg2rad(gyro(:,i)) - bias;
omega_norm = norm(omega);
if omega_norm == 0
q_dot = zeros(4,1);
else
q_dot = 0.5*[0; omega]/omega_norm * [x(4); x(5); x(6); x(7)];
end
F = [eye(3), -Ts*skew(omega);
zeros(4,3), eye(4)];
x_minus = F * x;
P_minus = F * P * F' + Q;
% Update state and covariance using measurement
z = [acc(:,i); mag(:,i)] / norm([acc(:,i); mag(:,i)]);
y = z - H * x_minus;
S = H * P_minus * H' + R;
K = P_minus * H' / S;
x = x_minus + K * y;
P = (I - K * H) * P_minus;
% Compute Euler angles from quaternion
roll(i) = atan2(2*(x(4)*x(5)+x(6)*x(7)), 1-2*(x(5)^2+x(6)^2));
pitch(i) = asin(2*(x(4)*x(6)-x(5)*x(7)));
yaw(i) = atan2(2*(x(4)*x(7)+x(5)*x(6)), 1-2*(x(6)^2+x(7)^2)) + declination;
end
end
function S = skew(v)
% Skew-symmetric matrix
S = [0 -v(3) v(2);
v(3) 0 -v(1);
-v(2) v(1) 0];
end
```
其中,`deg2rad`函数将角度转换为弧度,`skew`函数计算向量的反对称矩阵。在主函数 `ekf_attitude_estimation` 中,使用四元数进行姿态估计,并通过拓展卡尔曼滤波进行状态估计和协方差更新。最终,通过计算四元数到欧拉角的转换,得到三个姿态角。
阅读全文