python实现id3算法
时间: 2023-08-02 21:05:21 浏览: 116
ID3算法是一种决策树学习算法,用于分类和预测。下面是Python实现ID3算法的基本步骤:
1. 导入相应的库:
```
import pandas as pd
import numpy as np
import math
```
2. 定义一个函数来计算数据集的熵:
```
def entropy(target_col):
elements, counts = np.unique(target_col, return_counts=True)
entropy = np.sum(
[(-counts[i]/np.sum(counts)) * np.log2(counts[i]/np.sum(counts)) for i in range(len(elements))]
)
return entropy
```
3. 定义一个函数来计算数据集中每个特征的信息增益:
```
def info_gain(data, split_attribute_name, target_name="class"):
total_ent = entropy(data[target_name])
vals, counts = np.unique(data[split_attribute_name], return_counts=True)
weighted_ent = np.sum(
[(counts[i]/np.sum(counts)) * entropy(data.where(data[split_attribute_name] == vals[i]).dropna()[target_name])
for i in range(len(vals))]
)
info_gain = total_ent - weighted_ent
return info_gain
```
4. 定义一个函数来选择具有最高信息增益的特征:
```
def ID3(data, original_data, features, target_attribute_name="class", parent_node_class=None):
if len(np.unique(data[target_attribute_name])) <= 1:
return np.unique(data[target_attribute_name])[0]
elif len(data) == 0:
return np.unique(original_data[target_attribute_name])[
np.argmax(np.unique(original_data[target_attribute_name], return_counts=True)[1])]
elif len(features) == 0:
return parent_node_class
else:
parent_node_class = np.unique(data[target_attribute_name])[
np.argmax(np.unique(data[target_attribute_name], return_counts=True)[1])]
item_values = [info_gain(data, feature, target_attribute_name) for feature in features]
best_feature_index = np.argmax(item_values)
best_feature = features[best_feature_index]
tree = {best_feature: {}}
features = [i for i in features if i != best_feature]
for value in np.unique(data[best_feature]):
sub_data = data.where(data[best_feature] == value).dropna()
subtree = ID3(sub_data, original_data, features, target_attribute_name, parent_node_class)
tree[best_feature][value] = subtree
return tree
```
5. 最后,我们使用训练数据来构建一棵决策树:
```
def train_test_split(dataset, split_ratio=0.8):
train_size = int(split_ratio * len(dataset))
train_set = dataset.sample(train_size)
test_set = dataset.drop(train_set.index)
return train_set.reset_index(drop=True), test_set.reset_index(drop=True)
data = pd.read_csv("dataset.csv")
train_data, test_data = train_test_split(data)
tree = ID3(train_data, train_data, train_data.columns[:-1])
```
这样我们就可以得到一个基本的ID3算法实现。需要注意的是,这个实现并不包括一些优化技巧,例如剪枝等,因此在实际应用中可能需要进行一定的修改。
阅读全文